Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeJul 9th 2010

    Igor Bakovic created Diaconescu’s theorem

    • CommentRowNumber2.
    • CommentAuthorHarry Gindi
    • CommentTimeJul 9th 2010
    • (edited Jul 9th 2010)

    nm.

    • CommentRowNumber3.
    • CommentAuthorzskoda
    • CommentTimeJul 9th 2010

    Nanometer or New Mexico ?

    • CommentRowNumber4.
    • CommentAuthorHarry Gindi
    • CommentTimeJul 9th 2010

    I posted something that was incorrect and quickly edited/deleted it.

    Let’s just say I confused Diaconescu and Popescu.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeJul 9th 2010

    We need to do something to the entry classifying topos now. That focuses on algebraic theories. We need to say something about classifying toposes for torsors. Of course the Diaconesu-page now does precisely that in a way, but it should be expanded on at classifying topos.

    • CommentRowNumber6.
    • CommentAuthorMike Shulman
    • CommentTimeJul 9th 2010

    Of course, the classifying topos for torsors is a special case of the classifying topos for a geometric theory, and can be identified with the theory of flat functors on a category.

    • CommentRowNumber7.
    • CommentAuthorJohn Baez
    • CommentTimeJul 9th 2010

    On classifying topos I see a discussion “for groups”, which explains how to construct the essentially algebraic theory (i.e., finite limits theory) of groups. But it doesn’t seem to explain the classifying topos for groups! Is the idea that later someone will come along and explain that taking presheaves on the finite limits theory for groups will give the classifying topos for groups?

    This is in fact the only construction of classifying topoi that I thought I understood. I thought Urs was saying there was too much focus on this construction, but now it seems there’s not enough!

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeJul 9th 2010
    • (edited Jul 9th 2010)

    Of course, the classifying topos for torsors is a special case of the classifying topos for a geometric theory, and can be identified with the theory of flat functors on a category.

    Over a fixed group? How does this work?

    • CommentRowNumber9.
    • CommentAuthorTodd_Trimble
    • CommentTimeJul 10th 2010

    Set GSet^G classifies GG-torsors for a group GG. This is actually a good illustration of Diaconescu’s theorem proper.

    • CommentRowNumber10.
    • CommentAuthorMike Shulman
    • CommentTimeJul 10th 2010

    @John: That’s weird… yes, someone should come along and explain that! I didn’t realize that that example left off in the middle that way.

    @Urs: What Todd said. The same is true for any category C in place of G, when you define a “C-torsor” to mean a flat functor out of C (which generalizes the notion of torsor for a group), and that is then exactly Diaconescu’s theorem.

    • CommentRowNumber11.
    • CommentAuthorJohn Baez
    • CommentTimeJul 10th 2010

    Thanks for reassuring me I’m not insane, Mike. I’ll change that entry now while I’m waiting for the shuttle to pick me up and take me to the plane to Singapore.

    • CommentRowNumber12.
    • CommentAuthorEric
    • CommentTimeJul 10th 2010

    Welcome to Asia :)

    • CommentRowNumber13.
    • CommentAuthorJohn Baez
    • CommentTimeJul 10th 2010
    • (edited Jul 10th 2010)

    I won’t leave my house for 3 more hours, but thanks!

    While I’m waiting, I made a preliminary stab at fixing the discussion “for groups” in classifying topos, and also the previous section, “Background on the theory of theories” - which is really a general overview of 3 of our favorite doctrines. I’m not very happy with it; in particular I find it clunky to distinguish notationally between a “theory” (in some doctrine) and its “classifying category” (which is a category in that doctrine), but I wasn’t feeling brave enough to change this from the way the previous folks had written it.

    What is SetSet the classifying topos for?

    What is the category of simplicial sets the classifying topos for?

    What is the category of presheaves on FinSetFinSet the classifying topos for?

    What is the category of presheaves on FinSet opFinSet^{op} the classifying topos for?

    I have known the answer to some of these, at certain times… Someone should put the answers into the nnLab!

    Let’s see, FinSetFinSet is the free category with finite colimits on one object. So FinSet opFinSet^{op} is the free category with finite limits on one object - that is, the finite limits theory of an object. So presheaves on this should be the classifying topos for an object.

    The category 11 is the free category with finite colimits on nothing - that is, the initial category with finite colimits. So, 1 op11^{op} \cong 1 is also the free category with finite limits on nothing - that is, the finite limits theory of nothing. So the category of presheaves on this, namely the category SetSet, should be the classifying topos for “nothing”.

    Is this right? Just killing time…

    • CommentRowNumber14.
    • CommentAuthorJohn Baez
    • CommentTimeJul 10th 2010

    Okay, so SimpSetSimpSet is the classifying topos for interval objects.

    What about presheaves on Δ op\Delta^{op}? What’s that the classifying topos for?

    • CommentRowNumber15.
    • CommentAuthorTodd_Trimble
    • CommentTimeJul 10th 2010

    Presheaves on Δ op\Delta^{op} classify total orders, essentially because any total order is a filtered colimit of finite total orders aka objects of Δ\Delta.

    Presheaves on FinSetFinSet classify Boolean algebras (allowing the 1-point terminal algebra), because any Boolean algebra is a filtered colimit of finite Boolean algebras aka objects of FinSet opFinSet^{op}.

    I think you got the others.

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeJul 10th 2010

    Set GSet^G classifies GG-torsors for a group GG. This is actually a good illustration of Diaconescu’s theorem proper.

    But GG is not a geometric theory, or is it?

    And what we want to see is, I thought, torsors in a topos EE over a group object GG in the topos EE.

    • CommentRowNumber17.
    • CommentAuthorUrs
    • CommentTimeJul 10th 2010
    • (edited Jul 10th 2010)

    Maybe I still don’t get the the language of “theories”.

    For a topological group G topG_{top} the statement is that the classifying topos for topological GG-principal bundles is the Deligne topos of sheaves on the simplicial topological space NG topN G_{top}.

    Is that subsumed in the language that we currently have at classifying topos or not? What would be the geometric theory TT for this example?

    • CommentRowNumber18.
    • CommentAuthorMike Shulman
    • CommentTimeJul 10th 2010

    But G is not a geometric theory, or is it?

    No, G is not the syntactic category of a geometric theory. But there is a geometric theory T, called “the theory of G-torsors,” such that a T-model in a topos E is the same as a ΔG\Delta G-torsor in E. And if C TC_T denotes the syntactic category of T, then by general nonsense Sh(C T)Sh(C_T) is the classifying topos for T, and the statement is that Sh(C T)Set GSh(C_T) \simeq Set^G. Hence Set GSet^G also classifies G-torsors, even though G itself is not the syntactic category of a theory.

    The same is true for any presheaf category: by Diaconescu’s theorem, Set CSet^C classifies flat functors out of C, but C itself is not the syntactic category of the theory of flat functors out of C. That classifying category is larger than C, but equipped with a topology such that sheaves on it are equivalent to presheaves on C, since both classify the same thing. Make sense?

    If G is not a group in sets but a group in a topos E, then you just have to play the whole game relative to E. You can define what you mean by a geometric theory in a topos E, and any such theory T has a classifying E-topos, sometimes denoted E[T]E[T], such that for any E-topos F (meaning a topos equipped with a geometric morphism to E, i.e. an object of Topos/ETopos/E), we have

    Topos/E(F,E[T])TMod(F){Topos/E}\;\big(F,E[T]\big) \simeq T Mod(F)

    The same argument, relativized to E, shows that if T is the theory of G-torsors for a group G in E, then E[T]E GE[T] \simeq E^G. In particular, G-torsors in E are the same as maps EE GE\to E^G of E-toposes, i.e. “points” of E GE^G considered as an E-topos.

    Any statement you can make about classifying topoi must be included in this language in some sense, because every Grothendieck topos is the classifying topos of a geometric theory. Therefore, anything which is classified by some Grothendieck topos E must be equivalent (at least insofar as its models in other Grothendieck topoi go) to some geometric theory, namely the theory classified by E. Of course many different-looking theories can be classified by the same topos and hence be “Morita-equivalent.” I don’t know offhand of a clean geometric presentation of the theory of topological G-principal bundles, but one could obtain a messy theory Morita-equivalent to it by finding a site whose topos of sheaves is equivalent to the Deligne topos of sheaves on NG topN G_{top} and then writing down the theory of flat cover-preserving functors on that site.

    • CommentRowNumber19.
    • CommentAuthorUrs
    • CommentTimeJul 10th 2010
    • (edited Jul 10th 2010)

    Thanks, Mike.

    So in a somewhat provocative way I could say: a topos classifies whatever it classifies, namely categories of geometric morphisms into it, and this tautology may be retold as a story about geometric theories.

    As you say:

    Any statement you can make about classifying topoi must be included in this language in some sense, because every Grothendieck topos is the classifying topos of a geometric theory. Therefore, anything which is classified by some Grothendieck topos E must be equivalent (at least insofar as its models in other Grothendieck topoi go) to some geometric theory, namely the theory classified by E.

    I think I can appreciate the purpose of this theory-language, but maybe we could add to the beginning of the entry on classifying toposes some statements along these lines, that make it clear also to non-theory theoreticians such as me that what is discussed there does apply to Diaconescu’s theorem and alike.

    I’ll try to write something a little later maybe. You can still check and roll back if I get it wrong.

    • CommentRowNumber20.
    • CommentAuthorUrs
    • CommentTimeJul 10th 2010

    I have now edited and expanded at classifying topos

    • the Idea-section

    • the first 2.5 paragraphs of the Definition-section

    • CommentRowNumber21.
    • CommentAuthorMike Shulman
    • CommentTimeJul 10th 2010

    a topos classifies whatever it classifies, namely categories of geometric morphisms into it, and this tautology may be retold as a story about geometric theories.

    Yes. But you can say the same thing about any representable functor. For example, the classifying space BGB G of a group GG classifies whatever it classifies, namely homotopy classes of maps into it, and this tautology may be retold as a story about principal GG-bundles. Of course, in both cases the real meat of the story is in the retelling.

    • CommentRowNumber22.
    • CommentAuthorUrs
    • CommentTimeJul 12th 2010

    Of course, in both cases the real meat of the story is in the retelling.

    Yes, but as the above discussion shows, the previous version of the entry didn’t make it clear (to me! :-) that the story can always be retold in terms of geometric theories. That’s what I’d try to amplify now. But please feel free to edit if it sounds bad now.

    Same holds for spaces and bundles: while it is not hard, it does require a little bit of discussion that every space is the classifying space of some sort of principal bundle.

    By the way, what explcitly is the geometric theory TT such that Sh(C T)Set GSh(C_T) \simeq Set^G? Can one write this out in a nice useful manner? Or does it become a mess? And for Sh(NG top)Sh(N G_{top})?

    Another by the way: it should be useful to write Set GSet^{G} as Sh(BG)Sh(\mathbf{B}G). For G topG_{top} a topological group, that Deligne topos Sh(NG top)Sh(N G_{top}) of sheaves on a simplicial topological space ought to be the 2-colimit

    Sh(NG top)lim ([n]maptoSh(G ×n) Sh(N G_{top}) \lim_{\to} ([n] \mapto Sh(G^{\times n} )

    in toposes, mimicing the homotopy colimit

    BG=lim ([n]G ×n) \mathbf{B}G = \lim_{\to }( [n] \mapsto G^{\times n})

    in TopTop.

    A discussion along these lines might be useful in the entry to make the relation to classifying spaces for principal bundlesmore transparent.

    • CommentRowNumber23.
    • CommentAuthorDavid_Corfield
    • CommentTimeJul 12th 2010

    I asked a question at the discussion ’classifying topos’ which I see could have been posed here. In ’The idea’, the classifying topos BGB G for GG-torsors is being likened to the classifying space G\mathcal{B} G. Is there an analogue on the classifying topos side for the total space, EGE G, of the universal GG-bundle?

    Another point, the ’Diaconescu’s theorem’ entry speaks of CC-principal bundles for a small category CC, and links to the principal bundle page. However this page only speaks of GG-principal bundles for a group GG.

    • CommentRowNumber24.
    • CommentAuthorDavidRoberts
    • CommentTimeJul 13th 2010

    Another point, the ’Diaconescu’s theorem’ entry speaks of C-principal bundles for a small category CC, and links to the principal bundle page. However this page only speaks of GG-principal bundles for a group GG.

    I was wondering about this too: from context I gather that a CC-torsor could be a flat functor out of CC, but this is just a guess.

    • CommentRowNumber25.
    • CommentAuthorMike Shulman
    • CommentTimeJul 13th 2010

    I think the only definition I’ve ever seen of “C-torsor” for a category C defines it to mean “flat functor out of C.” I don’t know what I think about generalizing the meaning of “torsor” in that way, or whether it would be better to just say “flat functor.”

    A geometric theory T whose models are G-torsors can be described as follows. It has one sort, X, and one unary operation g:XXg:X\to X for every element gGg\in G. It has algebraic axioms x1(x)=x\top\vdash_x \;1(x) = x and xg(h(x))=(gh)(x)\top\vdash_x \;g(h(x)) = (g h)(x), which make X into a G-set, and geometric axioms xX\top \vdash\; \exists x \in X (inhabited-ness), g(x)=x xg(x) = x \;\vdash_x \;\bot for all g1g\neq 1 (freeness), and x,y gGg(x)=y\top\vdash_{x,y}\; \bigvee_{g\in G}\; g(x) = y (transitivity).

    • CommentRowNumber26.
    • CommentAuthorUrs
    • CommentTimeApr 27th 2011

    I have added to Diaconescu’s theorem the general statement of the theorem, a remark on its relevance to classifying toposes, a cautionary remark on the “torsor”-terminology, and a pointer to the Elephant.

    • CommentRowNumber27.
    • CommentAuthorUrs
    • CommentTimeJun 20th 2011

    The terminology clash that Mike points out was actually a problem in the entry Disconescu’s theorem.

    I think that was my fault. I remember how I hastily added in the theorems there a while back, and thought to myself “better write ’flat functor’ instead of the unfortunate ’torsor’”.

    In any case, I have tried to quickly fix this by adopting the more careful terminology that Mike suggests, there and at flat functor and site.

    But it’s after my bedtime and I shouldn’t be working anymore. Somebody should look over this carefully again.