Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorfpaugam
    • CommentTimeAug 26th 2011
    I would like to include something on wheeled properads (or wheeled PROPs) in the nlab. It seems to me that a wheeled prop is something like a symmetric monoidal category with duals for every object generated by one object. Is this right? Is there a place in the litterature where i can find the relation between wheeled properads used by Merkulov and some kinds of symmetric monoidal categories with duality?

    Before changing the PROP entry to add this variant, i would like to have a nice reference on this.
    • CommentRowNumber2.
    • CommentAuthorfpaugam
    • CommentTimeAug 28th 2011
    A motivation for this wheeled prop story is given by Merkulov and Mnev's approach to renormalization, as a homotopy transfer between wheeled props. To have this in a categorical logic framework, one needs:
    - a PROP version of wheeled properads
    - a homotopical version of these, to make homotopy transfer. I would tend to use something like \infty-wheeled PROPs, given by (\infty,4)-categories with 1 object, 1 morphism and 1 2-morphism. The point is to replace the Berger-Mordijk homotopy theory for operads in this more general setting.

    Any clues?
    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeAug 28th 2011

    Hi Frédéric,

    interesting questions. I wish I had more time for this right now (once again…). Hopefully somebody else has. Zoran will know more, once he comes back online.

    • CommentRowNumber4.
    • CommentAuthorJon Beardsley
    • CommentTimeJul 17th 2016
    • (edited Jul 17th 2016)

    Added some stuff to this page, including a (very basic) definition of colored PROPs, after work of Donald Yau. Also included one example and talked a bit about the possibility of having enriched PROPs. Linked to dioperad which doesn’t exist yet, but maybe should just redirect to polycategory anyway.

    • CommentRowNumber5.
    • CommentAuthorMike Shulman
    • CommentTimeJul 17th 2016

    I fixed two things: (1) in a colored prop it shouldn’t just be that the set of objects is the set of lists, but that the monoidal structure is given by concatenation of lists, and (2) every prop defines a polycategory, not vice versa.

    • CommentRowNumber6.
    • CommentAuthorJon Beardsley
    • CommentTimeJul 17th 2016

    Thanks Mike! I guess… haha now I’m actually confused about what “X defines a Y” even means. I was thinking “given a polycategory, there is an underlying PROP.”

    • CommentRowNumber7.
    • CommentAuthorJon Beardsley
    • CommentTimeJul 17th 2016

    Wait, I think I’m just genuinely confused about the mathematics here. What is meant by “every PROP defines a polycategory?” Given an arbitrary PROP we can produce a polycategory, is what you’re saying? Considering that PROPs can compose along lists with multiple objects in them, this would seem to indicate that many PROPs cannot be represented by a polycategory, right?

    • CommentRowNumber8.
    • CommentAuthorTodd_Trimble
    • CommentTimeJul 17th 2016

    Well, the problem is that a (representable) polycategory has two tensor products, whereas a prop is with respect to just one. The two tensor products can coincide, so a prop can give rise to a polycategory, but not the other way.

    • CommentRowNumber9.
    • CommentAuthorTodd_Trimble
    • CommentTimeJul 17th 2016

    I added the example of bialgebras to prop, which is perhaps a paradigmatic case.

    • CommentRowNumber10.
    • CommentAuthorJon Beardsley
    • CommentTimeJul 17th 2016

    Hm, ok. This is not clear from the entry on polycategories (i.e. what the two tensor products are). Certainly PROPs have two composition products (though one of these becomes the monoidal product in the representation at PROP). I mean, I’m trying to find a good reference on any of this stuff, and not having a ton of success, but are PROPs more general than polycategories, less general, or neither?

    • CommentRowNumber11.
    • CommentAuthorTodd_Trimble
    • CommentTimeJul 17th 2016
    • (edited Jul 18th 2016)

    So a representable polycategory is essentially the same as a linearly distributive category, which for categorically-minded readers may give the clearest impression of what polycategories really are. (Polycategories were invented I believe by Manfred Szabo, coming from more of a proof theory tradition, where logical sequents A 1,,A mB 1,,B nA_1, \ldots, A_m \to B_1, \ldots, B_n are classically interpreted as entailments from a conjunction A 1A mA_1 \wedge \ldots \wedge A_m to a disjunction B 1B nB_1 \vee \ldots \vee B_n.) Linearly distributive categories (q.v.), which have two tensor products related by a strength, are to polycategories as monoidal categories are to multicategories.

    Added: perhaps what makes it even clearer for the categorically-minded are the genuine examples of linearly distributive categories based on star-autonomous categories, where the two tensor products are really De Morgan dual to each other. (Linearly distributive categories aren’t much more general than that, because every linearly distributive category embeds fully and faithfully and linearly-distributively into a *\ast-autonomous category.)

    • CommentRowNumber12.
    • CommentAuthorTodd_Trimble
    • CommentTimeJul 18th 2016

    Props are less general than monoidal categories, and monoidal categories are examples of (and considerably less general than) linearly distributive categories, which are representable polycategories.

    • CommentRowNumber13.
    • CommentAuthorJon Beardsley
    • CommentTimeJul 18th 2016

    Added model structure on simplicial PROPs, morphisms of PROPs, and the endomorphism PROP example.

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeJul 18th 2016
    • (edited Jul 18th 2016)

    Thanks for all your additions, Jon!

    Here is one hint on the coding: it turns out that for anchoring references, it is better to put the anchor name at the beginning as in

      * {#HR1} [[Phillip Hackney]] and [[Marcy Robertson]], _On the Category of PROPs_, [arXiv:1207.2773v2](http://arxiv.org/pdf/1207.2773v2.pdf).
    

    instead of at the end, as in

      *  [[Phillip Hackney]] and [[Marcy Robertson]], _On the Category of PROPs_, [arXiv:1207.2773v2](http://arxiv.org/pdf/1207.2773v2.pdf). {#HR1}
    

    because sometimes with the latter software gets mixed up and mis-identifies the intended link.

    • CommentRowNumber15.
    • CommentAuthorMike Shulman
    • CommentTimeJul 18th 2016

    Perhaps what was confusing is that when a prop gives rise to a polycategory – that is, when you take a prop and consider its underlying polycategory – there is a lot of the structure that you don’t see any more. As you said, a prop has operations allowing you to compose along any number of objects (including zero, which is the “tensor product”), while when you make a polycategory out of it, you forget all those operations except the ones for composing along exactly one object. And that’s why you can’t go the other way: given a polycategory, you can’t make a prop because you don’t know how to compose along more (or less) than one object.

    • CommentRowNumber16.
    • CommentAuthorMike Shulman
    • CommentTimeJul 18th 2016

    The definition of prop we have on the page right now is the original “Adams-Mac Lane” one. I think I’ve read that there is another “graphical” one (maybe from here?) that is almost the same, but differs somehow in that the 0-ary-0-coary operations don’t commute as strictly. Does anyone know more about that than me?

    • CommentRowNumber17.
    • CommentAuthorMike Shulman
    • CommentTimeJul 18th 2016

    Todd, you might know the answer to this: are props conservative over polycategories? That is, do the prop axioms imply any properties of the operations on a polycategory that the polycategory axioms don’t? One way to say that precisely, I guess, is to generate the free prop F propGF_prop G and the free polycategory F polyGF_poly G on a “polygraph” GG and ask whether the unique functor of polycategories F polyGF propGF_poly G \to F_prop G is faithful.

    • CommentRowNumber18.
    • CommentAuthorJon Beardsley
    • CommentTimeJul 18th 2016

    @Urs: thanks for pointing that out! I’m very very new at doing anything more complicated than writing LaTeX on here, so all the tips are appreciated. I also basically just copied and pasted the +-- {: .num_defn } stuff, so I hope that’s not too messed up. If the nlab didn’t automatically collapse all my revisions you’d see that I made MANY MANY horrible mistakes!

    @Mike: okay yeah that makes sense. It seems like it’s sort of when you take a PROP to a category. You just lose a bunch of information?

    • CommentRowNumber19.
    • CommentAuthorUrs
    • CommentTimeJul 18th 2016
    • (edited Jul 18th 2016)

    @Jon, no problem at all, I am glad to see you that trying your hand on it. But if you want to experiment with stuff before changing a given page, you may want to use the Sandbox.

    • CommentRowNumber20.
    • CommentAuthorTodd_Trimble
    • CommentTimeJul 19th 2016

    Re #17: I don’t know the answer to this yet. I’d have to think some more on it.

    • CommentRowNumber21.
    • CommentAuthorMike Shulman
    • CommentTimeJun 14th 2017
    • (edited Jun 14th 2017)

    Up in #4 Jon said

    Linked to dioperad which doesn’t exist yet, but maybe should just redirect to polycategory anyway.

    Is a dioperad literally the same as a one-object (enriched) polycategory? Glancing at the definition I don’t see any obvious difference.

    • CommentRowNumber22.
    • CommentAuthorMike Shulman
    • CommentTimeJun 14th 2017

    Re #16:

    The definition of prop we have on the page right now is the original “Adams-Mac Lane” one. I think I’ve read that there is another “graphical” one (maybe from here?) that is almost the same, but differs somehow in that the 0-ary-0-coary operations don’t commute as strictly. Does anyone know more about that than me?

    what they say in the linked paper is

    In classical PROP’s there are two a priori different compositions, horizontal and vertical… In particular A(0,0)A(0,0) carries two multiplications which satisfy the middle interchange relation and thus make A(0,0)A(0,0) a commutative monoid by the classical Eckmann-Hilton argument….In graphical PROP’s however… there is no such graph representing vertical composition [A(n,0)×A(0,m)A(n,m)A(n,0) \times A(0,m)\to A(n,m)]; rather there is only a graph with two connected components which represents horizontal composition. Therefore, in the case of graphical PROP’s A(0,0)A(0,0) carries only one composition (the horizontal) and is thus not necessarily a commutative monoid.

    However, at the moment I don’t buy their definition of graphical PROP at all. They don’t actually give a precise definition, but the best I can extract from what they write is that graphical PROPs are the algebras for a polynomial monad of the form

    ×DirectedLoopFreeGraphs *DirectedLoopFreeGraphs×. \mathbb{N}\times \mathbb{N} \leftarrow DirectedLoopFreeGraphs_* \to DirectedLoopFreeGraphs\to \mathbb{N}\times \mathbb{N}.

    where DirectedLoopFreeGraphsDirectedLoopFreeGraphs and DirectedLoopFreeGraphs *DirectedLoopFreeGraphs_* denote respectively the set of isomorphism classes of directed loop-free “graphs” (in their sense) and the set of such isomorphism classes of graphs with one vertex marked. But this doesn’t really make sense to me because directed loop-free graphs can have automorphisms that interchange vertices, so that the operation of “inserting a graph at a vertex into another graph”, which is supposed to define the monad multiplication, doesn’t seem to make sense as an operation on isomorphism classes.

    • CommentRowNumber23.
    • CommentAuthorMike Shulman
    • CommentTimeJun 19th 2017

    On MO, Donald Yau has pointed out a citation for the statement “dioperads are one-object symmetric polycategories” (attributed there to Tom Leinster), so I’ve added a remark and redirect to polycategory.

    • CommentRowNumber24.
    • CommentAuthormaxsnew
    • CommentTimeMar 16th 2018

    It looks like the discussion died out here, but isn’t the page as written currently wrong when it says

    Note that PROPs are strictly more general than polycategories since in a PROP we can compose along many objects at once
    

    since this actually means PROPs are less general in that they require a more powerful operation?

    • CommentRowNumber25.
    • CommentAuthorMike Shulman
    • CommentTimeMar 16th 2018

    Yes, I think you’re right. At least, insofar as it makes sense to say that either one is “more general” than the other, which isn’t clear to me. There’s a right adjoint forgetful functor from props to polycategories, but it’s not full. Would we say that “sets are more general than groups”?

    • CommentRowNumber26.
    • CommentAuthormaxsnew
    • CommentTimeMar 20th 2018

    I just got rid of any use of “general” in comparing them. I think the properad article makes the same mistake, but I’m not familiar enough to know off-hand and not interested enough to make sure that I’m right, so I’ll leave it alone.

    Incidentally, is there a simple way to characterize the PROPs among the symmetric polycategories? Are they “just” symmetric polycategories that are representable on both sides where =\otimes = \invamp?

    • CommentRowNumber27.
    • CommentAuthoramarh
    • CommentTimeMar 21st 2018

    I suppose the way you are comparing coloured PROPs and symmetric polycategories is as structures whose morphisms have sequences of objects (or “elements of a freely generated monoid”) as inputs and outputs. Another way is to see a coloured PROP as a symmetric monoidal category (which “happens” to be strict and have a freely generated monoid of objects), and use the equivalence between generic SMCs and two-sided representable symmetric polycategories with a choice of universal morphisms, such that =\otimes = \parr and a bunch of other compatibilities. But the two are very different: going “from PROPs to polycategories”, in the first case you would take only the generating set as the set of objects of the polycategories, where in the second case you would take the entire generated monoid.

    In both cases, I don’t think it makes sense to “characterise PROPs among polycategories”: in the first case, as Mike points out, you don’t really have a way of composing morphisms as you would in a PROP; in the second case, “corresponding to a PROP” is the property of a choice of universal morphisms, more than a property of the polycategory itself.

    • CommentRowNumber28.
    • CommentAuthorMike Shulman
    • CommentTimeMar 22nd 2018

    I don’t know what “a property of a choice of universal morphisms means — universal morphisms being unique up to unique isomorphism, any property possessed by one choice of them should also be possessed by any other choice. I would say that “being a prop” is not a property of a polycategory, instead it’s extra structure on a polycategory (additional composition operations).

    • CommentRowNumber29.
    • CommentAuthoramarh
    • CommentTimeMar 22nd 2018

    To clarify, the point I was making is that there are two different functors from PROPs to polycategories:

    • the one that forgets some composition operations;

    • the inclusion of PROPs into symmetric monoidal categories, followed by the inclusion of SMCs into linearly distributive categories (as the “degenerate” ones with =\otimes = \parr), followed by the equivalence between linearly distributive categories and two-sided representable polycategories with a choice of universal morphisms.

    In #26 Max seemed to be thinking of the first one, but then mentioned representable polycategories, which are only produced by the second one.

    As Mike says, the first functor is not full, so “being a PROP” is best seen as extra structure on a polycategory, in this sense. For the second one, if we restrict to categories of strict monoidal functors, then restrict to functors of representable polycategories that preserve a choice of universal morphisms on the nose (and a specific choice really matters here), we do get a full functor and can speak of the “property” of being a PROP, but at the cost of introducing this extra structure.

    • CommentRowNumber30.
    • CommentAuthorMike Shulman
    • CommentTimeMar 22nd 2018

    Ah, I see. I’m still not sure that second functor is full either, though: when props are considered as (strict) smcs, a prop morphism isn’t just a (strict) sm functor but has to send generating objects to generating objects.

  1. added note at the top regarding that PROP is different from Prop.

    Anonymous

    diff, v27, current

    • CommentRowNumber32.
    • CommentAuthorBryceClarke
    • CommentTimeMar 6th 2023

    Updated references with DOIs and links to published versions.

    diff, v28, current