Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality education elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nforum nlab noncommutative noncommutative-geometry number number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • I started writing folk model structure on Cat with an explicit summary of the construction, and a description of how it can be modified to work if you assume only COSHEP. I feel like there should also be a "dual" model structure assuming some other weakening of choice, in which all categories are cofibrant and the fibrant objects are the "stacks", but I haven't yet been able to make it come out right.

    • Noticed that the entry topos was lacking an example-section, so I started one: Examples. Would be nice if eventually we'd have some discussion of non-Grothendieck topos examples.

      I won't do that now, off the top of my head. Maybe later.

    • cellular set, mainly references for now

      BTW, Does anybody have a file or scan of Joyal's original 1997 article ?

    • At Grothendieck fibration I wonder if we can make the definition less evil than the non-evil version there, with applications to Dold fibrations. Also the insertion of a necessary adjective at topological K-theory.

      -David Roberts
    • created infinity-limits - contents and added it as a toc to relevant entries

      (maybe I shoulod have titled the page differently, but it doesn't matter much for a toc)

    • created a section Contractible objects at lined topos.

      This introduces and discusses a bit a notion of objects being contractible with respect to a specified line object (maybe the section deserves to be at interval object instead, not sure).

      This notion is something I made up, so review critically. I am open for suggestions of different terminology. The concept itself, simple as it is (though not entirely trivial), I need for the discussion of path oo-groupoids of oo-stacks on my personal web:

      if a lined Grothendieck topos  (\mathcal{T} = Sh(C),R) is such that all representable objects are contractible with respect to the line object  R, then the path oo-groupoid functor

       \Pi : SSh(C) \to SSh(C)

      on simplicial sheaves, which a priori is only a Qulillen functor of oo-prestacks, enhances to a Quillen functor of oo-stacks (i.e. respects the local weak equivalences).

    • Added to the Idea section at space and quantity a short paragraph with pointers to the (oo,1)-categorical realizations. (Parallel to the blog discussion here)

    • no, I didn't create an entry with that title.

      but I added to n-fibration a brief link, though, to the concept that is currently described at Cartesian fibration, which models Grothendieck fibrations of (oo,1)-categories.

      This here is mainly to remind me that there is need to polish and reorganize the nLab entries on higher fibrations into something more coherent.

    • I fixed a bunch of broken links on the lab just now. In case anybody is wondering what all of those edits were.

    • I have just made links to all of the contentful orphaned paged on the main nLab web. However, they may still be walled gardens; Instiki doesn't find those automatically.

      In general, when you create a new page, it's a good idea to create a link to it from some existing page on a more general topic. (The links that I just made may not have been the best!) That way, it's more likely that people will actually find their way to your new page.

    • I wanted to start expanding on the big story at nonabelian Lie algebra cohomology, but then found myself wanting to polish first a bit further the background material.

      I came to think that it is about time to collect our stuff on "oo-Lie theory".

      So I created a floating table of contents

      and added it to most of the relevant entries.

      This toc is based on the one on my personal web here -- but much larger now -- and still contains some links to my web, where I am trying to develop the full story. If anyone feels ill-at-ease with these links to my personal web, let me know.

    • I created [[Riemann surface]] and [[Myers-Steenrod theorem]].

    • created quick stub for framed bicategory

      but my machine's battery will die any second now...

    • It looked to me like Urs hit Ctrl-V instead of Ctrl-C there, so I rolled back, but now Urs is editing again, so probably he's just doing something that I interrupted. Since I can't leave a note there now, I'll leave one here: I won't interfere again, Urs.

    • added to (infinity,1)-operad the definition/proposition of the model structure for the category of (oo,1)-categories of operations here

    • I added to vertical categorification the comments that I'd made at MathOverflow, as Urs has requested. I'm not sure that I'm happy with where I put them and how I labelled them, but maybe it's better if other people judge that.

    • Added some more to the ongoing discussion about composition at evil.

    • I'd like to add the following "shape" to :

      The limit of the identity functor Id: C --> C is the initial object of C (it it exists).
    • I've added the latest, almost complete, draft of my thesis to my personal web - go via David Roberts. Comments on introduction are welcome, if you feel so inclined. Just put them on David Roberts.

      On a related note, is it quite legitimate to post updates on personal webs here? (Now that I've already done it)

      David Roberts
    • Edited the page category theory. Mostly about that certain presheaves are the same as categories and the long discussion at the end with an idea how to solve my problem about CW-complexes. Removed precursors link since there is nothing about them in nLab. This new logging is a bit confusing and harder to read.

    • Created universal algebra in a monoidal category

      In the lab book metaphor, this page is some jottings of stuff that I'm pretty sure must be out there (as it's a fairly obvious thing to do) but have no idea of what it's called (hedgehogs, perhaps?). So I'd be grateful if someone strong in the ways of Lawvere theories could stop by and help me out.

      (Plus I had to make up the notation and terminology as I went along so that's all horrible)

      Hopefully the big box at the top of the page makes this clear!

    • I apologize in case this discussion is already open and I have been unable to find it.

      There is something I am unable to undrstand in the definition of extended TQFT as on the nLab page

      Namely, it seems to me that the recursive definition should rather end with "smooth compact oriented (n-m+1)-manifolds to R-linear (m?2)-categories"
    • One of these has started (or continued) a conversation at the bottom of graph.

    • I'm guessing that ferrim is spam. If no-one says anything to the contrary within 24hrs then I'll add it to the spam category.

      If it is spam, it's either a random spambot post or it's someone testing to see how vigilant we are. If the latter, as there's no content then they may simply test to see if the link stays active. In which case, our previous "policy" of blanking the content won't send the right signal here (especially as there's no content to blank). Is there any objection to renaming spam entries? Say, as 'spam (original title)' (or whatever the allowable punctuation characters are)?

    • In entry groupoid object in an (infinity,1)-category there is a passage

      "it is the generalization of Stasheff H-space from Top to more general ?-stack (?,1)-topoi: an object that comes equipped with an associative and invertible monoid structure, up to coherent homotopy"

      I repeat what I documented in earlier discussion on H-space: H-spaces are widely used terminology since 1950, thus before Stasheff work which of course is an important work on coherencies for them. So it is likely improper to say Stasheff H-space...Stasheff has REFINEMENTS of H-spaces, namely $A_n$-spaces and the group-like case is A infty spaces.

    • Somebody named ‘Harry’ has a comment at evil. Presumably it is of interest to Mike and me.

    • Added topological cube to cube, and removed some JA-esque redirects from terms like succubi and so forth.

      David Roberts
    • I see Mike's 1-category equipment

      May I vote for the following: we should "play Bourbaki" and correct the naming mistake made here. The obvious name one should use is "pro-morphism structure".

      We equip a category with pro-morphisms.

      We equip a category with a pro-morphism structure.

      Or, if you insist,

      We equip a category with pro-arrows.

      We equip a category with a pro-arrow structure.

      But the day will come when you want a pro-2-morphism structure. And then one will regret having used "arrow" instead of "morphism".

      I mean, compared to issues like "presentable" versus "locally presentable", this idea of saying just "equipment" is a bit drastic, to my mind.

    • I'd like to write something about a Quillen equivalence, if any, between model structures on

      • n-connected pointed spaces

      • grouplike E-n spaces .

      With the equivalence given by forming n-fold look spaces.

      But I need more input. I found a nice discussion of a model structure on n-connected pointed spaces in A closed model category on (n-1)-connected spaces. I suppose there is a standard model structure on E-k algebras in Top. Is a Quilen equivalence described anywhere?

    • I added to directed colimit the  \kappa -directed version, for some regular cardinal  \kappa .

      We should maybe also add to directed set the  \kappa -directed version. What we currently descrribe there is just the  \kappa = \aleph_0 -directed version.

      Accordingly then I also added to compact object the definition of the variant of  \kappa -compact objects.

      At small object previously it mentioned " \kappa-filtered colimits". I now made that read " \kappa-directed colimits".

      I hope that's right. If not, do we need to beware of the differene?

      • created entry for Dan Freed and added some links to articles by him here and there

      • expanded the discussion of face maps at dendroidal set a little

    • I did a wee bit of editing of "Dold-Kan correspondence", trying to incorporate Kathryn Hess' wisdom into this page. A lot of this stuff involves the monoidal aspects of the Dold-Kan correspondence, but I was too lazy to edit the separate page "monoidal Dold-Kan correspondence". I would ideally like that page to focus equal attention to chain complexes as it now does to cochain complexes!
    • I put a question at CommCoalg for those knowledgeable about accessible categories: is this category locally presentable?

    • Added some discussion to skeletal category about how skeletality doesn't imply uniqueness-on-the-nose for categorical constructions, tempting though it may be to suppose that.

    • Somewhat stubby beginning, but with a link to an old paper of Barr which may turn out to be useful for universal algebra in a monoidal category. Some discussion of measuring coalgebras is generalized to the framework of PROPs.