Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science connection constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity grothendieck group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory history homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limit limits linear linear-algebra locale localization logic mathematics measure-theory modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topological topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • I added a section on triangulable spaces and PL structures to simplicial complex, but this is the type of thing which gets beyond my ken pretty quickly. My real motivation is to convince myself that a space is homeomorphic to the realization of a simplicial complex (in short, is triangulable) if and only if it is homeomorphic to the realization of a simplicial set – perhaps this seems intuitively obvious, but it should be given a careful proof, and I want such a proof to have a home in the Lab. (Tim Porter said in a related discussion that there was a relevant article by Curtis in some early issue of Adv. Math., but I am not near a university library to investigate this.)

      I’ll put down some preliminary discussion here. Let P fin(X)P_{fin}(X) denote the poset of finite nonempty subsets of XX. A simplicial complex consists of a set VV and a down-closed subset ΣP fin(V)\Sigma \subseteq P_{fin}(V) such that every singleton {v}\{v\} belongs to Σ\Sigma. Thus Σ\Sigma is itself a poset, and we can take its nerve as a simplicial set. The first claim is that the realization of this nerve is homeomorphic to the realization of the simplicial complex. This I believe is or should be a basic result in the technique of subdivision. Hence realizations of simplicial sets subsume triangulable spaces.

      For the other (harder) direction, showing that realizations of simplicial sets are triangulable, I want a lemma: that the realization of a nerve of a poset is triangulable. Basically the idea is that we use the simplicial complex whose vertices are elements of the poset and whose simplices are subsets {x 1,x 2,,x n}\{x_1, x_2, \ldots, x_n\} for which we have a strictly increasing chain x 1<x 2<<x nx_1 \lt x_2 \lt \ldots \lt x_n. Then, the next step would use the following construction: given a simplicial set XX, construct the poset whose elements are nondegenerate simplices (elements) of XX, ordered x<yx \lt y if xx is some face of yy. The claim would be that the realization of XX is homeomorphic to the realization of the nerve of this poset.

      All of this could very well be completely standard, but it’s hard for me to find an account of this in one place. Alternatively, my intuitions might be wrong here. Or, perhaps I’m going about it in a clumsy way.

    • So, I have some pending changes on operad that I made in the sandbox and am waiting for a go-ahead to post from the interested parties, but I was also wondering if someone would be willing to write up a follow-up to the very nice definition of an operad as a monoid in the blah blah monoidal category. That is, it seems like this should give us a very nice way to define an algebra, but I don't know how one would actually go about doing it.

    • rearranged a bit and expanded category theory - contents. In particular I added a list with central theorems of category theory.

    • created sidebar toc Yoneda lemma - contents.

      Not yet convinced myself that I found the right subdivisions and probably forgot some entries. Please improve.

    • added Eric’s illustrations to the Idea-section at representable presheaf. Also added a stub-section on Definition in higher category theory.

    • On the page hom-functor, it says

      There is also a contravariant hom-functor

      hom(,c):C opSet, hom(-,c) : C^{op} \to Set,

      where C opC^{op} is the opposite category to CC, which sends any object xC opx \in C^{op} to the hom-set hom(x,c)hom(x,c).

      If you write it like this, should you really call it “contravariant”? When you write C opC^{op}, I thought you should call it just “functor” or “covariant”. By saying it is contravariant AND writing C opC^{op}, it seems like double counting.

      I hope to add some illustrations to these pages. It is a shame there are not more illustrations on the nLab since nStuff is so amenable to nice pictures.

    • Added complete topological vector space including various variants (quasi-complete, sequentially complete, and some others). Hopefully got all the redirects right!

      I only have Schaefer’s book at home so couldn’t check “locally complete” - I know that Jarchow deals with this in his book. Kriegl and Michor naturally only consider it in the context of smootheology so I’m not sure what the “best” characterisation is. There’s also a notational conflict with “convenient” versus “locally complete”. As Greg Kuperberg pointed out, in some places “convenient” means “locally complete and bornological” whereas in others it means just “locally complete” (in the contexts where convenient is used the distinction is immaterial as the topology is not considered an integral part of the structure).

      I added these whilst working on the expansion of the TVS relationships diagram. That brought up a question on terminology. In the diagram, we have entries “Banach space” and “Hilbert space” (and “normed space” and “inner product space”). These don’t quite work, though, as for a topological vector space the correct notion of a normed space should be normable space as the actual choice of norm is immaterial for the TVS properties. I’m wondering whether or not this is something to worry about. Here’s an example of where it may be an issue: a nuclear Banach space is automatically finite dimensional. That implies that its topology can be given by a Hilbert structure. However, the Hilbertian norm may not be the one that was first thought of. But that’s a subtlety that’s tricky to convey on a simple diagram. So I’d rather have “normable” than “normed”. Does anyone else have an opinion on this?

      If “normable” is fine, then the important question is: what’s a better way of saying “Hilbertisable”, or “Banachable”? Length doesn’t matter here, as I’m putting the expanded names in tooltips and only using abbreviations in the diagram.

    • I started writing something about codiscrete cofibrations, which is a nice way that many categories can be canonically equipped with proarrows. Richard Garner is visiting Chicago this week, and yesterday some of us were talking about how this construction can be made very functorial, giving a very nice way to construct functors and monads on equipments; I plan to add this to the entry as well.

    • started rational homotopy theory in an (infinity,1)-topos

      With just slightly more it could also be called "Lie theory in an oo,1-topos" I suppose.

      if you looked at this yesterday, as it was under construction, maybe have another look: I believe I could clarify the global story a bit better.

    • Looking at the entry Banach spaces, I found the following in the introduction:

      So every nn-dimensional real Banach space may be described (up to linear isometry, the usual sort of isomorphism) as the Cartesian space n\mathbb{R}^n equipped with the pp-norm for 1p1 \leq p \leq \infty

      which seems to imply that every norm on a finite dimensional Banach space is a pp-norm for some pp. That feels to me like a load of dingo’s kidneys. To define a norm on some n\mathbb{R}^n I just need a nice convex set, and there’s lots more of these than the balls of pp-norms, surely.

      Am I missing something?

    • Moonshine, intentionally with capital M as most people do follow this convention for the Monster and (Monstrous) Moonshine VOA.

    • somebody signing as “Anonymous Coward” had created special relativity and typed in a confused paragraph (the smallest confusion being that the paragraph concerned not special but general relativity).

      I removed that paragraph and quickly wrote a brief “Idea”-section . But have no time to do this justice now.

    • It got announced in another category, but here it is in Latest Changes:

      Todd began (and then I edited) simple group.

    • I wrote a quick entry conformal group, just from memory. Somebody could check and expand. In fact it would not be bad to have also a separate entry on conformal and on quasiconformal mappings.

    • somehow I missed that there already is a page compact operator and created compact operators. The plural is another error :-) the unsatisfied link that I used to create the page was “compact operators”. When I tried to rename it to the singular term it failed, of course. Now the page compact operators is simply superfluous, but as a non-administrator I cannot delete it…

    • Created sequential compactness, should probably link to all these compactness variations from compact space. Not sure if I got the “iff” bit right in the relationship with compactness itself; will check it myself if no-one fixes it in the meantime.

      I decided that this was the key property in manifolds of mapping spaces and to stop trying to figure out a Froelicher version of sequentially compact for the time-being.

    • the term “twist” or “twisted” is one of those insanely ambiguous terms in math. Trying to follow our recent agreement on how to deal with ambiguous page names, I tried to indicate this at twist .

    • Created lax-idempotent 2-monad, with some definitions from Kelly–Lack. I think Kock has a couple of others. I’ll add more, like proofs of the equivalence of the definitions, and more on the cocompletion example, later (next week, probably).

    • The final copy of my thesis is up on the lab. Available from Fundamental Bigroupoids and 2-Covering Spaces. I’ve fixed the typo in definition 5.1 that made it into the print copy ;)

      Thus I’ve updated the links at David Roberts, the above linked page, and on my private web home page. If anyone knows of any other places it is linked, please let me know, or update the link to point to DMRthesis_final.pdf, instead of DMR_thesis.pdf.

      Now to all the other projects that are on the back burner, time permitting…

    • stub for 2-topos (mostly so that the links we have to it do point somewhere at least a little bit useful)