Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality education elliptic-cohomology enriched fibration foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes science set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorAndrew Stacey
    • CommentTimeOct 31st 2011

    Timothy Gowers has a blog post on publishing:

    http://gowers.wordpress.com/2011/10/31/how-might-we-get-to-a-new-model-of-mathematical-publishing/

    The last paragraph of his post is relevant to the Publications of the nLab! We can just comment, “Publish it here”.

    • CommentRowNumber2.
    • CommentAuthorzskoda
    • CommentTimeNov 2nd 2011

    Gowers did lots of good thinking into his proposal but overall this is yet another push toward “reputation points” system which is eventually bogged: those more active are more heard, and if you have a school of one approach you can dominate the area, and the really original hard thinkers will be trashed out. With the present reviewing system with assigned referees this is less the case, though in minor way this still exists. We rather need overlay boards to certificate arXiv papers as refereed with control of a relevant board and decommercialize the system by that way. The discussion sites are welcome, but should not be the main evaluation points. It is also good thatthe authors explain their results and in any system it will do good for them, but making the evaluation process dependent on an extensive self-explanation on specially designated article page would be too much. Some poeple like Gowers and some of us are more internet oriented, but some people do math in peace of their office. Shaharon Shellah, one of the greatest living mathematicians, for example was at Madison when I was there for half a year and did not attend any seminars, even in his area. It does not constitute a recommended behaviour but for him this works better. Look at his production and you will see.

    • CommentRowNumber3.
    • CommentAuthorAndrew Stacey
    • CommentTimeNov 2nd 2011

    We rather need overlay boards to certificate arXiv papers as refereed with control of a relevant board and decommercialize the system by that way.

    I’m in complete agreement with that. My proposal would be to have “boards” that produce a list of “important papers” each time period (monthly, quarterly, annually - there’d be a place for each). The characteristics that I would consider important would be:

    1. The papers themselves reside on the arXiv. A board certifies a particular version, so the author can update their paper if they wish.

    2. A paper can be “certified” by any number of boards. This would mean that boards can have different but overlapping scopes. For example, the Edinburgh mathematical society might wish to produce a list of significant papers with Scottish authors. Some of these will be in topology, whereupon a Topological journal might also wish to include them on their list.

    3. A paper can be recommended to a board in one of several ways: an author can submit their paper, the board can simply decide to list a particular paper (without the author’s permission), an “interested party” can recommend a particular paper by someone else.

    4. Refereeing can be more finely grained. The “added value” from the listing can be the amount of refereeing that happened, and (as with our nJournal) the type of refereeing can be shown. In the case of a paper that the board has decided themselves to list, the letter to the author might say, “We’d like to list your paper in our yearly summary of advances in Topology. However, our referee has said that it needs the following polishing before we do that. Would you be willing to do this so that we can list it?”