Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundle bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homology homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory itex k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthoralexis.toumi
    • CommentTimeAug 29th 2019

    Page created, but author did not leave any comments.

    v1, current

    • CommentRowNumber2.
    • CommentAuthoralexis.toumi
    • CommentTimeAug 29th 2019
    I noticed the nlab did not have a dedicated page for pregroup grammars.
    I'm starting to write down some notes, trying to connect them with what was already there on categorial grammars and linguistics in general.
    • CommentRowNumber3.
    • CommentAuthoralexis.toumi
    • CommentTimeAug 29th 2019

    removing capital letter

    diff, v3, current

    • CommentRowNumber4.
    • CommentAuthorTodd_Trimble
    • CommentTimeAug 29th 2019

    It should be pointed out (somewhere, sometime) the relationship between pregroups and residuated lattices, which appears in much older work of Lambek dating back at least to the 60’s. This work of Lambek was all of a piece, connecting module theory to proof theory to linguistics. I would like to add some of this history at some point.

    • CommentRowNumber5.
    • CommentAuthoralexis.toumi
    • CommentTimeAug 30th 2019
    Great suggestion! I don't know so much of the historical details, apart from the original paper from Lambek, The Mathematics of Sentence Structure (1958). There should definitely be a page for the Lambek calculus, residuated monoids and their categorification to biclosed monoidal categories. Some of the details are in Coecke et al, Lambek vs. Lambek: Functorial Vector Space Semantics and String Diagrams for Lambek Calculus (2013).
    • CommentRowNumber6.
    • CommentAuthorGuest
    • CommentTimeSep 2nd 2019
    I would like to know where did this sentence come from: "A sequence of words is grammatical whenever there exists a string diagram going from the sequence of words to the sentence type.", and if there are any references and research on the use of string diagrams to model natural languages, or, more specifically, to describe context-free grammars. I am interested in the use of pregroup grammars and Lambek's research on the development of visual programming languages. Zorkedon
    • CommentRowNumber7.
    • CommentAuthoratmacen
    • CommentTimeSep 4th 2019

    Re #6: This blog post is saying something very similar, using a monoidal category for sentence derivations. “That is, a string uV u \in V^\star is grammatical whenever there exists an arrow from the start symbol ss to uu in 𝒞 R\mathcal{C}_R.” Morphisms in monoidal categories can be notated using string diagrams.

    • CommentRowNumber8.
    • CommentAuthoralexis.toumi
    • CommentTimeSep 4th 2019
    The use of string diagrams to model natural language has become folklore in the DisCoCat (categorical compositional distributional) community, see e.g. Coecke et al. (2010)
    As far as I'm aware there isn't any reference which spells out the details fully, which is part of the reason why I started this page, as well as the one on context-free grammars.
Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)