Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundle bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monads monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeApr 7th 2010

    polished and expanded adjoint (infinity,1)-functor

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeApr 7th 2010
    • (edited Apr 7th 2010)

    added some more stuff,

    am about to write the section on preservation of limits and colimits, but I am wondering:

    in ordinary cat theory, that right(left) adjoints preserve (co)limits follows purely formally from three ingredients:

    1. characterization of adjunction by hom-isomorphism;

    2. preservation of limits by hom-functors in both variables;

    3. the Yoneda lemma.

    It would seem that in the (oo,1)-category context we just check these three ingredients and then deduce the statement that left oo-adjoints preserve oo-colimits formally by direct analogy.

    Now, instead in HTT, section 5.2.3 a rather tedious simp-set gymnastics is performed to show this.

    I am wondering therefore: it seems we essentially do have the three items above in the oo-context:

    1. the first is HTT prop.,

    2. the second is essentially HTT A.3.3.12,

    3. and the last one is the combination of statements collected at Yoneda lemma for (infinity,1)-categories .

    So one would hope that we can just argue formally on this basis that left adjoints preserves oo-colimits. But there are probably subtleties in the details...

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeApr 7th 2010

    added in the details of construction and proofs on how simplicial and simplicial Quillen adjunctions induce oo-adjunctions in Simplicial and derived adjunctions

    Okay, enough (oo,1)-entertainment for today, now I need to focus my thoughts on a talk I will give in Nijmegen tomorrow...

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeNov 17th 2010
    • (edited Nov 17th 2010)

    added the proposition on how adjoint (,1)(\infty,1)-functors pass to slices, at adjoint (oo,1)-functor – on over-(oo,1)-categories

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeJan 7th 2019

    added publication data for

    diff, v32, current

    • CommentRowNumber6.
    • CommentAuthorMike Shulman
    • CommentTimeJun 18th 2019

    I seem to recall that recently someone asked a question here on the nForum about characterizing adjoint (,1)(\infty,1)-functors via universal arrows, or equivalently by pointwise representability (that is, if D(X,G)D(X, G -) is representable for all objects XX then these representing objects assemble into a functor left adjoint to GG), and that a reference was given. But after a few minutes of searching I can’t find it, and it doesn’t seem to have made it onto the page adjoint (infinity,1)-functor. Can anyone find the discussion or re-give the reference?

    • CommentRowNumber7.
    • CommentAuthorjweinberger
    • CommentTimeJun 18th 2019

    Possibly this? Having an oo-left adjoint

    • CommentRowNumber8.
    • CommentAuthorMike Shulman
    • CommentTimeJun 18th 2019

    Yes, that’s it; thanks!

    • CommentRowNumber9.
    • CommentAuthorMike Shulman
    • CommentTimeJun 19th 2019

    Added characterization in terms of universal arrows.

    diff, v33, current

  1. added additional reference to HTT for ’universal arrow’ characterization.


    diff, v34, current

    • CommentRowNumber11.
    • CommentAuthorMike Shulman
    • CommentTimeJun 20th 2019

    That statement from HTT is not exactly this proposition. I can see how it contains essentially the same information, but it’s hidden in the phrase “representable right fibration”. In particular, I’m pretty sure that I glanced past that statement in HTT while looking for this result and didn’t notice it. So I edited the attribution here in an attempt to reduce confusion in the reader.

    diff, v35, current

    • CommentRowNumber12.
    • CommentAuthorGuest
    • CommentTimeJun 20th 2019
    “With some work” feels even more misleading though. ‘representable fibration’ is synonymous with “equivalent to an overcategory” so the work required is “know the definition of representable fibration, or guess it” (and also dualize between right and left adjoints, but that seems harmless). It also seems strange to prioritize credit to Rigel-Verity just because they say over/undercategory instead of “something equivalent to an over/undercategory”, doesn’t it?
    • CommentRowNumber13.
    • CommentAuthorGuest
    • CommentTimeJun 20th 2019
    (Sorry the above and this are from Dylan- my phone forgot my login).
    • CommentRowNumber14.
    • CommentAuthorMike Shulman
    • CommentTimeJun 21st 2019

    I wasn’t thinking of credit, but of clarity for the reader. You also have to realize that the pullback of a representable fibration is the relevant comma category, and that this being equivalent to an overcategory over its codomain is the same as having a terminal object.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)