Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homology homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory kan lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology natural nforum nlab nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topological topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMar 19th 2020

    Added a theorem with a reference.

    diff, v21, current

    • CommentRowNumber2.
    • CommentAuthorMike Shulman
    • CommentTimeApr 26th 2021

    When discussing the alternative notion of distributivity for sound doctrines, this page says

    See Appendix A in AR for a comparison of this definition to the above explicit definition.

    But I haven’t been able to find such a comparison in the cited appendix. It seems to me that the appendix just mentions that their sound-doctrine notion of distributivity is distinct from the notion of commutativity. Am I missing something?

    • CommentRowNumber3.
    • CommentAuthorDmitri Pavlov
    • CommentTimeApr 26th 2021

    Rewrote a confusing paragraph:

    See Appendix A in AR for a comparison of this definition to the above explicit definition in the special case of distributivity of filtered colimits over small limits in locally finitely presentable categories and distributivity of sifted colimits over small limits in varieties of algebras.

    diff, v24, current

    • CommentRowNumber4.
    • CommentAuthorDmitri Pavlov
    • CommentTimeApr 26th 2021

    Re #2: Example A.4 in the cited paper does talk about the special case of the doctrine of filtered colimits in some detail:

    Example A.4. In every lfp category filtered colimits distribute over products. This was already proved by Artin, Grothendieck and Verdier in [10]. To verify this, recall the following description of Ind K from [18]: objects are all small filtered diagrams D : D → K. Morphisms into another filtered diagram ¯D : ¯D → K are compatible families of equivalence classes [fd]d∈obj D of morphisms fd : Dd → ¯Dd′, d′ ∈ obj ¯D, under the smallest equivalence ∼ with fd ∼ D¯u · fd for every morphism ¯u : d′ → d′′ in ¯D. Compatibility means that for every morphism v : d1 → d2 in D we have fd1 ∼ fd2 · Dv. Now a product in Ind K is easy to describe: given objects Di : Di → K for i ∈ I, their product is the filtered diagram D : i∈I Di → K, D(di)i∈I =i∈I Didi And in every lfp category the colimit of D is canonically given by the product of colimits of Di, i ∈ Ij, see e.g. [8], proof of 2.1. Now, distributivity of filtered colimits in K over products means that K has both, and that given filtered diagrams Di (i ∈ i) we have colim D =i∈I colim Di

    • CommentRowNumber5.
    • CommentAuthorDmitri Pavlov
    • CommentTimeApr 27th 2021

    The original definition is due to Jan-Erik Roos, see Definition 1 in

    • Jan-Erik Roos, Introduction à l’étude de la distributivité des foncteurs lim par rapport aux lim dans les catégories des faisceaux (topos), Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 259 (1964), 969–972. roos-distributivity.pdf:file.

    diff, v25, current

    • CommentRowNumber6.
    • CommentAuthorvarkor
    • CommentTimeApr 28th 2021

    Was the PDF of Roos’s paper meant to be uploaded to the nLab? I wasn’t able to find a copy elsewhere.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeApr 28th 2021

    It was uploaded, but the link-to-uploaded-file-functionality does not work here on the nForum.

    You can see the working link on the nLab page here, it’s at ncatlab.org/nlab/files/roos-distributivity.pdf

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)