Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 22nd 2010

    It would good to have some general discussion here, but I don't know enough to get it started. I mean especially the relationships between G-structures, integrability conditions (including those of higher degree), transitive pseudogroups, and Cartan geometry.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeApr 22nd 2010

    Maybe you should open a corresponding stub nLab entry with some keywords and some references and the like, so that I for instance have a chance of knowing what it might be I could contribute.

    • CommentRowNumber3.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 22nd 2010
    • CommentRowNumber4.
    • CommentAuthorzskoda
    • CommentTimeApr 22nd 2010

    This is a topic which has been systematized several decades ago; is there some fundamental new vision recently there ?

    • CommentRowNumber5.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 22nd 2010

    No, nothing especially new, unless there was something worth developing about torsoroids. I was just looking around a bit after John's last TWF, and came across some things, which I still don't know how to tie together.

    • CommentRowNumber6.
    • CommentAuthorTim_Porter
    • CommentTimeApr 23rd 2010

    Surely this stuff needs categorifying. I mean looking at a frame bundle, what is a 2-frame bundle? What is a G-2-structure for G a 2-group? I stop there because you all are capable of giving the continuation...! Some has been categorified I think, at least tentatively and in the blog but was there a conclusion. Reduction of structure group also leads to obstructions and cohomological interpretations ....? and what are the analogues of pseudogroups etc.

    • CommentRowNumber7.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 23rd 2010
    • (edited Apr 23rd 2010)

    Yes, Tim, that thought occurred to me. Then I had the sneaking suspicion that Urs had started to do this anyway with his fivebrane(n)- and string(n)- structures as these aren’t Lie groups, yet can be realised as Lie 6-group/Lie 2-groups. But from the discussion at string 2-group, I see that this introduces a distinction irrelevant to all the examples at GG-structure. Do we have a case of topological 2-groups GG about which we might want to say that a space has a GG-structure?

    Also Urs has phrased things in terms of classifying spaces, e.g., XSpin(n)X \to \mathcal{B} Spin(n). Could one not categorify that quite easily?

    • CommentRowNumber8.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 23rd 2010

    Wait a minute. Kobayashi defines G-structures in Transformation groups in differential geometry for GG a Lie subgroup of GL(n,R)GL(n, R). That raises two questions.

    1) From the Wikipedia article it seems GG is allowed to be more generally a Lie group with a map to GL(n,R)GL(n, R), so G=spin(n)G = spin(n) is fine. Is this generally accepted?

    2) Should Urs have written that spin(n)spin(n) as a topological group gives rise to a spin-structure?

    • CommentRowNumber9.
    • CommentAuthorTim_Porter
    • CommentTimeApr 23rd 2010

    I do not claim to understand this area well, but it seems to me that traditionally one had either a subgroup or an extension so there were obstructions either to getting the transition functions to be in the subgroup or to lift to the `overgroup', but turning the subgroup inclusion into a fibration made the two similar if not the same problems. That however still leaves the integrability condition to handle and there I get a bit lost.

    I have a nice example where things aren't smooth so forms etc do not enter but there is a sense in which the same thing seems to be happening, namely Pl-structures. The Hauptvermutung problem was solved by showing first that the fibre of the `obvious' fibration between the classifying spaces (done simplicially) was homotopically a K(C_2,1) and then finding how to construct a manifold where the lifting did not exist using that information. In other words it uses simplicial groups instead of topological or Lie ones.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeApr 23rd 2010

    David,

    there are differen concepts called "G-structure". Spin-structure etc. refers to lifts of the structure group of the tangent bundle of a manifold. In other contexts "G-structure" means that the holonomy group of a metric manifold is G, hence that the structure group can be reduced .

    We should have an nLab entry explaining this...

    • CommentRowNumber11.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 26th 2010

    2-frame bundle?

    presumably given some 2-vector bundle, we could try to take at each point on the base some groupoid that is meant to be something like a basis, and see what the symmetries are. I think that in the ’groupoidification’ programme there was some way of going from a groupoid to a 2-vector space, how about going the other way?

    Going down a dimension for a moment, a fin. dim. vector space gives at least a number - its dimension, which is the decategorification of any set of basis elements. This arises in part from the free-forget adjuction between Set and Vect. Is there a way to get a similar adjunction between 2Vect and Gpd? Is the 2-vector space with basis a groupoid Γ\Gamma the functor category Vect ΓVect^\Gamma, in the same way that the vector space with basis SS is the function space k Sk^S?

    Given this, can we talk about a groupoid which is some sense ’linearly independent’? Can we do this with polynomial functors? By checking that the only solution to

    gV gA g? \bigoplus_g V_g \otimes A_g \simeq ?

    is trivial (is the trivial rep)? Some of these questions are probably nonsensical :)

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeApr 26th 2010

    Is the 2-vector space with basis a groupoid Γ\Gamma the functor category Vect ΓVect^\Gamma, in the same way that the vector space with basis SS is the function space k Sk^S?

    Yes, that’s how I like to think of (Bimod=Bimod =) VectMod2Vect Vect Mod \subset 2 Vect as being the sub-2category of 2-vector spaces that admit a basis. (Noticing that Vect ΓVect^\Gamma is the same as k[Γ]Modk[\Gamma]-Mod for k[Γ]k[\Gamma] the category algebra of Γ\Gamma.)

    In this sense the “dimension” of a 2-vector space would be a Morita equivalence class of algebras (algebroids).

    And that idea of speaking of a 2-frame bundle of a 2-vector space seems to be a good one. We are this very moment having some discussion about this in Utrecht…

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeApr 26th 2010
    • (edited Apr 26th 2010)

    I should maybe clarify: when I write VectModVect Mod here I mean it in the sense of the bicategory of modules and bimodules in the sense of Vect-enrriched category theory: so objects are Vect-enriched categories = algebroids, which we think of as placeholders for their categories of Vect-valued presheaves = modules over them. Morphisms are bimodules/profunctors between these Vect-enriched categories, that we think of as placeholders for colimit-preserving linear functors between the corresponding presheaf categories.

    • CommentRowNumber14.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 26th 2010

    Urs, I wonder how close your initial guess at a 2-frame bundle will turn out to be.

    • CommentRowNumber15.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 26th 2010

    Morita equivalence class of algebras (algebroids)

    or better: some sort of stack of algebras?

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeFeb 3rd 2012
    • (edited Feb 3rd 2012)

    Some new comments on an old discussion:

    re #4

    is there some fundamental new vision recently there ?

    Yes: its all about twisted c-structures in SmoothGrpdSmooth\infty Grpd.

    re #6

    Surely this stuff needs categorifying.

    Done. :-)

    I mean looking at a frame bundle, what is a 2-frame bundle?

    The frame bundle construction is just a way to get the principal bundle to which the tangent bundle is associated. It helps here to forget vector bundles entirely for the time being and just look at everything in terms of the underlying principal bundles.

    Then for instance an example of a 2-frame bundle is the StringString-2-bundle that lifts the ordinary frame bundle over a manifold with String-structure.

    What is a G-2-structure for G a 2-group?

    For GKG \to K any morphism of smooth \infty-groups, where we might consider K=GL(n)K = GL(n) for a give nn-dimensional manofold XX, a GG-structure on TXT X is an object in the 2-groupoid given as the homotopy pullback

    H(X,BG)× H(X,BK){TX}. \mathbf{H}(X, \mathbf{B}G) \times_{\mathbf{H}(X, \mathbf{B}K)} \{T X\} \,.

    More is at twisted differential c-structure and the links given there.