Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMay 6th 2020

    stated the definition Δf=ddf\Delta f = \star d \star d f and spelled out how this gives the usual component formula:

    ddf =d( jf)dx j =d(1(D1)!|det((g ij))|g ij( jf)ε ik 2k Ddx k 2dx k D) = k 1(1(D1)!|det((g ij))|g ij( jf)ε ik 2k Ddx k 1dx k 2dx k D) =|det((g ij))|1D!(D1)!ε l 1l 2l Dg l 1k 1g l 2k 2g l Dk Dε ik 2k D=det((g ij) 1)δ i k 1 k 1(|det((g ij))|g ij( jf)) =1|det((g ij))|δ i k 1 k 1(|det((g ij))|g ij( jf)) =1|det((g ij))| i(|det((g ij))|g ij( jf)) \begin{aligned} \star d \star d f & = \star d \star (\partial_j f) d x^j \\ & = \star d \left( \tfrac{1}{ \color{green} (D-1)! } \sqrt{ \left\vert det\big( (g_{i j}) \big) \right\vert } \, g^{ i j} (\partial_j f) \, \epsilon_{ i {\color{green} k_2 \cdots k_{D} } } d x^{ \color{green} k_2 } \wedge \cdots \wedge d x^{ \color{green} k_{D} } \right) \\ & = \star \partial_{ \color{magenta} k_1} \left( \tfrac{1}{ \color{green} (D-1)! } \sqrt{ \left\vert det\big( (g_{i j}) \big) \right\vert } \, g^{i j} (\partial_j f) \, \epsilon_{ i {\color{green} k_2 \cdots k_{D} } } d x^{ \color{magenta} k_1 } \wedge d x^{ \color{green} k_2 } \wedge \cdots \wedge d x^{ \color{green} k_{D} } \right) \\ & = \sqrt{ \left\vert det\big( (g_{i j}) \big) \right\vert } \underset{ = \det\big( (g_{i j})^{-1} \big) \delta^{ \color{magenta} k_1 }_i }{ \underbrace{ \tfrac{1}{ { \color{orange} D! } { \color{green} (D-1)! } } \epsilon_{ \color{orange} l_1 l_2 \cdots l_D } g^{ { \color{orange} l_1 } { \color{magenta} k_1 } } g^{ { \color{orange} l_2 } { \color{green} k_2 } } \cdots g^{ { \color{orange} l_D} { \color{green} k_D } } \epsilon_{ i {\color{green} k_2 \cdots k_{D} } } } } \, \partial_{ \color{magenta} k_1 } \left( \sqrt{ \left\vert det\big( (g_{i j}) \big) \right\vert } g^{i j} (\partial_j f) \right) \\ & = \frac{1}{ \sqrt{ \left\vert det\big( (g_{i j}) \big) \right\vert } } \delta^{ \color{magenta} k_1 }_i \partial_{ \color{magenta} k_1 } \left( \sqrt{ \left\vert det\big( (g_{i j}) \big) \right\vert } g^{i j} (\partial_j f) \right) \\ & = \frac{1}{ \sqrt{ \left\vert det\big( (g_{i j}) \big) \right\vert } } \partial_{i} \left( \sqrt{ \left\vert det\big( (g_{i j}) \big) \right\vert } g^{i j} (\partial_j f) \right) \end{aligned}

    diff, v7, current

    • CommentRowNumber2.
    • CommentAuthorDavid_Corfield
    • CommentTimeMay 6th 2020

    I always forget we have these colour effects:

    a{\bgcolor{red} a}

    b{\color{green} b}

    c{\bgcolor{green} \color{red} c}

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeMay 6th 2020

    Ah, thanks for reminding me that there is the background color option, too: \bgcolor. Maybe that can be put to useā€¦