Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homology homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monads monoidal monoidal-category-theory morphism motives motivic-cohomology newpage nforum nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeSep 4th 2020

    starting something

    v1, current

    • CommentRowNumber2.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 13th 2021
    • (edited Apr 13th 2021)

    Do I understand correctly that this iterated K-theory is not quite the same as secondary K-theory, as treated by

    • Aaron Mazel-Gee, Reuben Stern, A universal characterization of noncommutative motives and secondary algebraic K-theory, (arXiv:2104.04021)

    Seems so

    Note that there is a canonical map K◦K→K(2) from iterated K-theory to secondary K-theory, which is nontrivial [HSS17, Remark 6.23]. Indeed, it is expected that secondary K-theory is a substantially richer invariant than iterated K-theory

    Probably worth its own entry then.

  1. This is a very good question! I’d recommend the sketch paper ’Chern character, loop spaces, and derived algebraic geometry’ by Toën and Vezzozi: what is clear is that both secondary K-theory and elliptic cohomology are related to categorifications of K-theory; both can be thought of in terms of categorified vector spaces of some kind (2-vector bundles/dg-categories/etc). And elliptic cohomology is supposed, by red-shift, to be the algebraic K-theory of topological K-theory. Thus the two are closely related. Toën and Vezzozi suggest that maybe secondary K-theory will turn out to be some kind of ’algebraic elliptic cohomology’, which seems a reasonable guess.

  2. It will be very interesting if/when people take the next step up the categorical ladder, because things are much harder there. Up to dimension 2, one has a kind of guide from étale cohomology: one can more or less construct the first and second étale cohomology groups geometrically (there is a Picard stack, and there is probably a derived Brauer 2-stack) using essentially 1-categorical gadgets (Azumaya algebras in the case of second étale cohomology), so one has a guide for how things should look. There is no such thing known for the third étale cohomology group and onwards.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeApr 14th 2021
    • (edited Apr 14th 2021)

    it is expected that secondary K-theory is a substantially richer invariant than iterated K-theory

    Sounds like a grant application. What’s the evidence?

    • CommentRowNumber6.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 15th 2021

    The Introduction of this article discusses secondary K-theory, and there’s a comparison map right at the end (Remark 6.23), but I can’t see anything explicit on the substantial extra richness:

  3. If one believes that secondary K-theory is something like ’algebraic elliptic cohomology’, then the difference should be something like the difference between topological and algebraic K-theory. Of course that is very vague :-).

  4. In the definition of secondary K-theory per now, one is only really seeing a shadow of what should be a ’categorified cohomology theory/spectrum’.

    • CommentRowNumber9.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 15th 2021

    If there is a comparison map between algebraic and topological K-theory, and the associations in #7 are right, we’d expect a map from secondary to iterated K-theory. I’ve only seen mentioned one the other way, the ’canonical’ one in #2.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeApr 15th 2021

    If one believes that secondary K-theory is something like ’algebraic elliptic cohomology’

    On what basis would you believe this? At the face of it this sounds wild. I’d be happy to learn about it if its true, but what’s the evidence?

    Notice BDR fell into this trap previously with prematurely claiming that categorified vector bundles present elliptic cohomology – despite the glaring hint that no elliptic curve would make an appearance. Later they changed terminology to claim a “form of elliptic cohomology” to mean something “essentially of chromatic filtration 2”.

    Notice that instead of connecting to elliptic cohomology, the interesting result they eventually got, after Richter joined in, was that – after group completion – the categorified vector bundles presented iterated K-theory. So in that case, instead of the categorified theory being “substantially richer”, it ended up – after waving a homotopy-theory wand over it, at least – being equivalent to iterated K-theory.

    That’s a really interesting result. It might be more widely known had it not been served with a red herring.

    • CommentRowNumber11.
    • CommentAuthorMarc Hoyois
    • CommentTimeApr 15th 2021

    Re #5: if FF is a field, then K 0(K(F))=K_0(K(F))=\mathbb{Z} whereas K 0 (2)(F)K_0^{(2)}(F) contains the Brauer group of FF. I don’t really know anything about the higher homotopy groups, however. It’s not inconceivable that they would agree.

    The only explicit connection I know between secondary/iterated K-theory and elliptic cohomology is the chromatic complexity, as Urs mentioned.

    • CommentRowNumber12.
    • CommentAuthorRichard Williamson
    • CommentTimeApr 15th 2021
    • (edited Apr 15th 2021)

    Yes, I was just using the ’elliptic’ terminology for ease of reference to Toën-Vezzosi, the point as I mentioned is really to do with different ways of categorifying vector bundles, topological vs algebraic. I think there is a decent chance of some kind of comparison map, David, when formulated in the correct context.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeJul 22nd 2021

    I have added the following previously missing clause to the first lines of the Idea-section:

    When RR happens to be a connective E E_\infty-ring spectrum, then also the representing spectrum K(R)K(R) of its algebraic K-theory is a connective E E_\infty-ring spectrum (Schwänzl & Vogt 1994, Thm. 1, EKMM 97, Thm. 6.1)

    and I added the following pointer, to go with this:

    diff, v6, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)