Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homology homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory kan lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology natural nforum nlab nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topological topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorJon Beardsley
    • CommentTimeDec 16th 2020

    Apologies is this is a well known fact, but it seems to me that a symmetric monoidal pseudofunctor from FinSet to Cat is precisely the data of a symmetric monoidal category. I wanted to ask if this was proven in detail anywhere (or maybe not true). I’d also be interested to know how this might relate to various ideas of something like 2-PROPS or different types of weak algebras for some kind of operad/monad/PROP, assuming any of that makes sense.

    • CommentRowNumber2.
    • CommentAuthorJohn Baez
    • CommentTimeDec 16th 2020
    • (edited Dec 16th 2020)

    I’ve never heard of this fact; Joe Moeller was just explaining it to me. It seems pretty cool and I hope you folks can prove this gold-plated version:

    Conjecture. The 2-category SymMonCat\mathbf{SymMonCat} is equivalent to the 2-category of symmetric monoidal pseudofunctors (FinSet,+)(Cat,×)(\mathsf{FinSet}, +) \to (\mathbf{Cat}, \times).

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeDec 16th 2020
    • (edited Dec 16th 2020)

    Seen under the Grothendieck construction (from xyz-functors out of FinSet *FinSet_\ast to xyz-fibrations over FinSet *FinSet_\ast) this is the motivating example of the definition of \infty-operads in Chapter 2 of Jacob Lurie’s Higher Algebra.

    See from construction 2.0.0.1 on p. 165 to Def. 2.0.0.7 on p. 169, where it says:

    One of our main goals in this book is to show that Definition 2.0.0.7 is reasonable: that is, it provides a robust generalization of the classical theory of symmetric monoidal categories.

    • CommentRowNumber4.
    • CommentAuthorRichard Williamson
    • CommentTimeDec 16th 2020
    • (edited Dec 16th 2020)

    Re #1: This seems to me to be fairly obvious, one is basically just parametrising bracketing. One can strictify everything as well by replacing FinSetFinSet by a skeleton of itself and using strict 2-functors. Note that FinSetFinSet (or its skeleton) is the free symmetric monoidal category on a commutative monoid, and a commutative monoid in Cat\mathsf{Cat}, up to coherence issues, is a symmetric monoidal category (expressing this precisely proves the conjecture in #2). Thus we can certainly generalise this in various ways. E.g. the simplex category Δ\Delta is the free monoidal category on a monoid, so a monoidal category will be the same as a monoidal pseudofunctor from Δ\Delta to Cat\mathsf{Cat}.

    There is a general pattern here that the core of FinSetFinSet is the free symmetric monoidal category on an object; retaining the non-automorphisms upgrades the universal property to being free on a commutative monoid. The analogous statement holds for Δ\Delta too. There is probably some very general 2-categorical theorem along these lines: take some 2-monad on Cat\mathsf{Cat} (e.g. that of symmetric monoidal categories), take the 1-monad corresponding to the one-object version of the algebras for this 2-monad (the monad of commutative monoids in this case), and then the 2-category of structure-preserving functors from the free 2-algebra (for the 2-monad) on a 1-algebra (for this 1-monad) to Cat\mathsf{Cat} should be equivalent to the 2-category of algebras for the 2-monad. I’d guess that’s in the literature, but I’d have no idea where to find it.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeDec 16th 2020

    Yeah, the idea is well-known in algebraic topology. For instance it’s used in the definition of Gamma-spaces (symmetric monoidal \infty-categories that happen to be \infty-groupoids), dating back to 1974.

    Specifically for the case of symmetric monoidal categories, there ought to be earlier accounts than Higher Algebra, but I would have to dig around to find them.

    • CommentRowNumber6.
    • CommentAuthorDylan Wilson
    • CommentTimeDec 16th 2020

    As mentioned in the homotopy theory chatroom, this is immediate from the fact that Fin is the symmetric monoidal envelope of Fin_* (so actually a symmetric monoidal functor from Fin to any symmetric monoidal C is the same as a commutative algebra object in C). (HA.2.2.4.9). I guess then the question becomes: “why are ’pseudo-gamma categories’ the same as symmetric monoidal categories (classically defined)?” but that is classical… I don’t know the earliest reference. Presumably at this low-categorical level one could check by hand. Another proof is to use the Barr-Beck theorem: there is an evident construction that takes a symmetric monoidal category and spits out a ’pseudo-gamma category’, and this commutes with the forgetful functor to the (2,1)-category of categories. So by nonsense we are reduced to checking that the ’free symmetric monoidal category’ is the same as the ’free pseudo-gamma category’, which, if need be, can be checked using the formula in HA.3.1.3.13. [This, by the way, builds an equivalence of (2,1)-categories of ’symmetric monoidal cats’ and ’pseudo-gamma cats’.]

    • CommentRowNumber7.
    • CommentAuthorJon Beardsley
    • CommentTimeDec 16th 2020
    • (edited Dec 16th 2020)

    I don’t know how to reply to comments in the correct way, so I’ll just try to label things sensibly.

    @Urs: One does need to be a bit careful since the framework Lurie uses is actually based on taking the free semi-Cartesian symmetric monoidal category on an operad (also known as the May-Thomason category of operators, which is I think the earliest reference for this precise construction) rather than the free symmetric monoidal category. Presumably there are sort of parallel theories here, i.e. Segal-type functors out of finite pointed sets and symmetric monoidal functors out of finite sets. And also, in your reference to Γ-spaces I think some care must still be taken. These are functors out of finite pointed sets satisfying the Segal condition, not symmetric monoidal functors out of finite sets. I suspect that some of the difference is obscured by the fact that the usual codomains in these cases, Cat and Top, are Cartesian monoidal. But anyway, I think when the codomain is Cartesian monoidal it doesn’t matter.

    @Richard: Indeed, I also think it’s somewhat “obvious” which is why I’m a bit surprised that it’s not in some well known place in the literature. Maybe it’s just too “obvious” for anyone to bother writing down, which I think is unfortunate (and also why I suspect there’s some more general theorem which has this statement as a special case, as you suggest but are sadly not able to provided a reference for).

    @Dylan yes, I definitely agree that this statement can be proven using the symmetric monoidal envelope machinery described in higher algebra. Ultimately I was hoping there was some low-brow proof/description of it which predated that kind of stuff (and moreover I really did just want to talk about pseudofunctors of 2-categories, not ∞-categories). And, yes, one can check by hand, and Joe Moeller and I have basically done that.

    • CommentRowNumber8.
    • CommentAuthorRichard Williamson
    • CommentTimeDec 16th 2020
    • (edited Dec 16th 2020)

    Just to emphasise that the fact that FinSet\mathsf{FinSet} is the free symmetric monoidal category on a commutative monoid is certainly in the literature (googling turned up a recent paper of Hyland and Power, but of course it is much older). If one restricts to fully strict symmetric monoidal categories, then the conjecture in #2 is just the statement of this universal property plus the observation that a commutative monoid in Cat\mathsf{Cat} is exactly a (fully strict) symmetric monoidal category. Extracting a weak version of this is just a matter of interpreting ’commutative monoid’ weakly 2-categorically rather than 1-categorically, and again is really just (one version of) the statement of the universal property.

    I should say that I did not really try to find a reference for the 2-monadic formulation I mentioned! I don’t know the literature too well on 2-monads, and tend to just follow my nose. If Mike sees this, he would know better whether there is a reference. One could begin by trying to make sense of the first step in my formulation, namely: given a 2-monad on Cat\mathsf{Cat}, how do we rigorously construct the 1-monad whose algebras are the ’one-object’ versions of the algebras for the 2-monad? I suspect there is some nice abstract way to do this using 2-categorical techniques. That must be extractable from the literature!