Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf sheaves simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeJun 25th 2021

    have brushed-up the Definition-section

    diff, v16, current

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeJun 25th 2021

    added a remark (here) on the two different notions of free loop space objects for orbifolds, related by pullback along the shape-unit of the circle:

    Λ𝒳=[ʃS 1,𝒳][η S 1,𝒳][S 1,𝒳]=𝒳. \Lambda \mathcal{X} \;=\; \big[ ʃS^1, \, \mathcal{X} \big] \xrightarrow{ \; [\eta_{S^1},\mathcal{X}]\; } \big[ S^1, \, \mathcal{X} \big] \;=\; \mathcal{L} \mathcal{X} \,.

    diff, v16, current

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeJun 25th 2021

    added statement (here) of the skeleton of the inertia orboifold of proper good orbifolds

    diff, v16, current

    • CommentRowNumber4.
    • CommentAuthorDavidRoberts
    • CommentTimeJun 26th 2021

    Added reference:

    A Fréchet–Lie groupoid presenting the cohesive free loop space-orbifold is given in

    diff, v17, current

    • CommentRowNumber5.
    • CommentAuthorDavidRoberts
    • CommentTimeJun 26th 2021

    We also claim in the announcement

    that the Lie groupoid presenting the resulting infinite-dimensional differentiable stack is even proper étale, hence an orbifold groupoid, though the full write-up of this is still on the back-burner.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeJun 26th 2021

    How about making an entry loop orbifold or loop stack where this would fit?

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeJun 29th 2021

    It has become tradition to say that the inertia orbifold is the S 1S^1-fixed locus in a groupoid presentation of the free loop stack (e.g. Lupercio & Uribe 2001, Thm 3.6.4). However, it seems to me that this statement is not homotopy-meaningful:

    The identification of the smooth free loop stack [S 1,𝒳][S^1, \mathcal{X}] with the co-free S 1S^1-action induced by 𝒳\mathcal{X} (as seen in the diagram here) shows at once that its homotopy-fixed locus is just 𝒳\mathcal{X}:

    ([𝒮,𝒳]) 𝒮(p B𝒮) *(pt B𝒮) *(𝒳)(id) *(𝒳)𝒳, \Big( \big[ \mathcal{S}, \, \mathcal{X} \big] \Big)^{\mathcal{S}} \;\simeq\; (p_{\mathbf{B}\mathcal{S}})_\ast \circ (\mathrm{pt}_{\mathbf{B}\mathcal{S}})_\ast \big( \mathcal{X} \big) \;\simeq\; (\mathrm{id})_\ast \big( \mathcal{X} \big) \;\simeq\; \mathcal{X} \,,


    id:*pt B𝒮B𝒮p B𝒮* id \;\colon\; \ast \xrightarrow{pt_{\mathbf{B}\mathcal{S}}} \mathbf{B}\mathcal{S} \xrightarrow{ p_{{}_{\mathbf{B}\mathcal{S}}} } \ast

    (here for 𝒮S 1\mathcal{S} \coloneqq S^1)

    It seems to me that in order to relate the inertia and the smooth loop stack in a homotopy-meaningful way, one needs to invoke cohesion.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeJul 11th 2021

    I have made explicit (here) the following basic fact, which, for what it’s worth, becomes a triviality only through appeal to the path-notation for the Eilenberg-Zilber decomposition:

    The nerve of the inertia groupoid of a delooping groupoid of a finite group GG is isomorphic to the simplicial hom complex out of the minimal simplicial circle SS (Def. \ref{MinimalSimplicialCircle}) into the simplicial classifying space W¯G\overline{W}G:

    N(ΛBG) [S,W¯G] . N\big( \Lambda \mathbf{B}G\big)_\bullet \;\simeq\; [S,\overline{W}G]_\bullet \,.

    Under this isomorphism, an n-simplex (γ,g n1,,g 1,g 0)(\gamma, g_{n-1}, \cdots, g_1, g_0) of N(Func(B,BG))N\big( Func( \mathbf{B}\mathbb{Z}, \, \mathbf{B}G )\big), being a sequence of natural transformations of the form

    g n1 g n2 g nj1 g nj2 g nj3 g 0 γ g n1 1γg n1 (g n1g 0) 1γ(g n1g 0) g n1 g n2 g nj1 g nj2 g nj3 g 0 \array{ \bullet &\xrightarrow{g_{n-1}}& \bullet &\xrightarrow{g_{n-2}}& \cdots &\xrightarrow{g_{n-j-1}}& \bullet &\xrightarrow{g_{n-j-2}}& \bullet &\xrightarrow{g_{n-j-3}}& \cdots &\xrightarrow{g_{0}}& \bullet \\ \big\downarrow {}^{\mathrlap{ \gamma }} && \big\downarrow {}^{\mathrlap{ g_{n-1}^{-1} \cdot \gamma \cdot g_{n-1} }} && && \big\downarrow && \big\downarrow && && \big\downarrow {}^{\mathrlap{ ( g_{n-1} \cdots g_{0} )^{-1} \cdot \gamma \cdot ( g_{n-1} \cdots g_{0} ) }} \\ \bullet &\xrightarrow{g_{n-1}}& \bullet &\xrightarrow{g_{n-2}}& \cdots &\xrightarrow{g_{n-j-1}}& \bullet &\xrightarrow{g_{n-j-2}}& \bullet &\xrightarrow{g_{n-j-3}}& \cdots &\xrightarrow{g_{0}}& \bullet }

    is sent to the homomorphism

    Δ[n]×SW¯G \Delta[n] \times S \xrightarrow{\;\;} \overline{W}G

    which, in turn, sends a non-degenerate (n+1)(n+1)-simplex in Δ[n]×S\Delta[n] \times S of the form (in the path notation discussed at product of simplices)

    (0,[0]) (1,[0]) (j,[0]) (j,[1]) (j+1,[1]) (n,[1]) \array{ (0,[0]) &\to& (1,[0]) &\to& \cdots &\to& (j,[0]) \\ && && && \big\downarrow \\ && && && (j,[1]) &\to& (j+1,[1]) &\to& \cdots &\to& (n,[1]) }

    to the n+1n+1-simplex in W¯G\overline{W}G of the form

    g n1 g n2 g nj1 (g n1g nj1) 1γ(g n1g nj1) g nj2 g nj3 g 0 \array{ \bullet &\xrightarrow{g_{n-1}}& \bullet &\xrightarrow{g_{n-2}}& \cdots &\xrightarrow{g_{n-j-1}}& \bullet \\ && && && \big\downarrow {}^{\mathrlap{ ( g_{n-1} \cdots g_{n-j-1} )^{-1} \cdot \gamma \cdot ( g_{n-1} \cdots g_{n-j-1} ) }} \\ && && && \bullet &\xrightarrow{g_{n-j-2}}& \bullet &\xrightarrow{g_{n-j-3}}& \cdots &\xrightarrow{g_{0}}& \bullet }

    diff, v23, current

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeJul 12th 2021
    • (edited Jul 12th 2021)

    added (here) the consequence for the form of the simplicial evaluation map:

    The evaluation map

    [S,W¯G]×SW¯G [S,\overline{W}G] \times S \xrightarrow{\;\;} \overline{W}G

    (out of the product of the simplicial hom complex out of SS with SS) takes any non-degenerate n+1n+1-simplex of [S,W¯G]×S[S,\overline{W}G] \times S of the form (still in the path notation discussed at product of simplices)

    (γ,[0]) (g n1,id) (Ad n1(γ),[0]) (g n2,id) (g j,id) (Ad j(γ),[0]) (e,[[0],[1]]) (Ad j(γ),[1]) (g nj,id) (g 0,id) (Ad 0(γ),[1]), \array{ (\gamma, [0]) &\xrightarrow{ (g_{n-1}, id) }& ( Ad_{n-1}(\gamma), [0] ) &\xrightarrow{ (g_{n-2}, id) }& \cdots &\xrightarrow{ (g_{j}, id) }& \big( Ad_{j}(\gamma), [0] \big) \\ && && && \big\downarrow {}^{\mathrlap{ (e, [ [0],[1] ]) }} \\ && && && (Ad_j(\gamma), [1]) &\xrightarrow{ (g_{n-j},id) } & \cdots &\xrightarrow{ (g_0,id) }& (Ad_0(\gamma), [1]) \mathrlap{\,,} }

    where we are abbreviating

    Ad j(γ) Ad (g n1g j)(γ) (g n1g j) 1γ(g n1g j), \begin{aligned} Ad_j(\gamma) & \;\coloneqq\; Ad_{(g_{n-1} \cdots g_j)}(\gamma) \\ & \;\coloneqq\; (g_{n-1} \cdots g_j)^{-1} \cdot \gamma \cdot (g_{n-1} \cdots g_j) \,, \end{aligned}

    to the following n+1n+1 simplex of W¯G\overline{W}G:

    g n1 g n2 g j Ad j(γ) g nj g 0 . \array{ \bullet &\xrightarrow{ g_{n-1} }& \bullet &\xrightarrow{ g_{n-2} }& \cdots &\xrightarrow{ g_{j} }& \bullet \\ && && && \big\downarrow {}^{\mathrlap{ Ad_j(\gamma) }} \\ && && && \bullet &\xrightarrow{ g_{n-j} } & \cdots & \xrightarrow{ g_0 } & \bullet \mathrlap{\,.} }

    diff, v24, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)