Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorDavidRoberts
    • CommentTimeMay 24th 2010

    partition of unity, locally finite cover

    Will put up some stuff about Dold’s trick of taking a not-necessarily point finite partition of unity and making a partition of unity. There is a case when I know it works and a case I’m really not sure about - I need to find where the argument falls down because I get too strong a result. I’ll discuss this in the thread soon, and port it over when it is stable.

    • CommentRowNumber2.
    • CommentAuthorDavidRoberts
    • CommentTimeMay 24th 2010

    I’ve found the argument that I was discussing with Harry here, in Dold’s lectures on algebraic topology. It’s a result due to an M. Mather, in a 1965 Cambridge PhD thesis, Paracompactness and partitions of unity. Will type it here then copy it over to the lab when at work tomorrow.

    Definition: A collection of functions u i:X[0,1]u_i : X \to [0,1] is called locally finite if the cover u i 1(0,1]u_i^{-1}(0,1] (the induced cover) is locally finite.

    Proposition (Mather, 1965): Let {u i} J\{u_i\}_J be a non-point finite partition of unity. Then there is a locally finite partition of unity {v i} iJ\{v_i\}_{i\in J} such that the induced cover of the latter is a refinement of the induced cover of the former.

    ’Dold’s trick’ is about taking a countable family of functions u iu_i and turning it into a locally finite partition of unity, the proof of the above proposition is a little bit different in flavour (but not that different).

    • CommentRowNumber3.
    • CommentAuthorDavidRoberts
    • CommentTimeMay 26th 2010

    copy it over to the lab

    I’ve now put this in at partition of unity.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeApr 27th 2017

    What’s a “non-point finite partition of unity”? If it is what it sounds like, then how is the sum well defined?

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeApr 27th 2017
    • (edited Apr 28th 2017)
    • CommentRowNumber6.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 28th 2017

    Hmm, not sure. I’d have to check Dold’s book again. In principle one could say that one has a collection of functions to [0,1] such that at each point only countably many are nonzero, and the sum exists and is 1 at each point.

    • CommentRowNumber7.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 29th 2017

    Yes, it seems to be as I thought, from looking at the Google Books link, just before Lemma 2.6 in the Appendix.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeApr 29th 2017

    Okay, thanks. We should says this more clearly in the entry then.

    • CommentRowNumber9.
    • CommentAuthorfwaaldijk
    • CommentTimeApr 29th 2017

    If anyone is interested, there is a constructive (BISH) treatment of ’partition of unity’, ’locally finite open cover’, and ’star-finite open cover’ in section 3.1 of my thesis modern intuitionistic topology. It gives a simple proof that every per-enumerable* cover of a separable metric space has i) a star-finite refinement b) a subordinate partition of unity.

    *A subset UU is enumerably open when it is an enumerable union of basic opens, a cover 𝒰\mathcal{U} is per-enumerable when it is an enumerable collection of enumerably open sets.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeApr 29th 2017
    • (edited Apr 29th 2017)

    Thanks for the pointer. I have added it here, here and here.

    • CommentRowNumber11.
    • CommentAuthorfwaaldijk
    • CommentTimeApr 29th 2017

    Oh well, that’s nice!, thank you. I might edit the entry in ‘partition of unity’ since it now reads ’in intuitionistic mathematics’ whereas the relevant definitions and proofs are already in BISH (constructive mathematics, without use of intuitionistic axioms).

    {Many paragraphs in the thesis are marked with an asterisk * to indicate that they are valid in BISH}.

    • CommentRowNumber12.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 29th 2017

    I edited partition of unity to clarify around the case without point-finiteness.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeApr 29th 2017
    • (edited Apr 29th 2017)

    David, thanks! Where you wrote “convergent infinite sum” I made it come out as “convergent infinite series”.

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeApr 29th 2017

    Frank, okay, thanks.

    Presently the nnLab pages intuitionstic mathematics and constructive mathematics may not completely reflect the sharp distinction that you are making here (or if they do, I find it hard to extract it). Maybe you have the energy to touch these pages accordingly?

    • CommentRowNumber15.
    • CommentAuthorfwaaldijk
    • CommentTimeApr 30th 2017

    OK, fair enough, I’ll see what I can do in the coming month. I’m always a bit reluctant to edit because I’m not sure that my ‘style’ will fit in or serve the purpose of the nLab. But I should be able to manage some clarification and specification of ideas and axioms. It’s true that my energy is limited, so it will take a bit more time than average, but I suppose that won’t be a problem. [By the way, I find it really really impressive how hard and conscientiously people work on nLab, and work together.]

    I’ll notify of any changes I make, here on nForum.

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeMay 1st 2017

    Thanks, Frank! Please don’t worry about style. The important point is the content.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)