Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTodd_Trimble
    • CommentTimeMay 24th 2010
    • (edited May 24th 2010)

    I added a section on triangulable spaces and PL structures to simplicial complex, but this is the type of thing which gets beyond my ken pretty quickly. My real motivation is to convince myself that a space is homeomorphic to the realization of a simplicial complex (in short, is triangulable) if and only if it is homeomorphic to the realization of a simplicial set – perhaps this seems intuitively obvious, but it should be given a careful proof, and I want such a proof to have a home in the Lab. (Tim Porter said in a related discussion that there was a relevant article by Curtis in some early issue of Adv. Math., but I am not near a university library to investigate this.)

    I’ll put down some preliminary discussion here. Let P fin(X)P_{fin}(X) denote the poset of finite nonempty subsets of XX. A simplicial complex consists of a set VV and a down-closed subset ΣP fin(V)\Sigma \subseteq P_{fin}(V) such that every singleton {v}\{v\} belongs to Σ\Sigma. Thus Σ\Sigma is itself a poset, and we can take its nerve as a simplicial set. The first claim is that the realization of this nerve is homeomorphic to the realization of the simplicial complex. This I believe is or should be a basic result in the technique of subdivision. Hence realizations of simplicial sets subsume triangulable spaces.

    For the other (harder) direction, showing that realizations of simplicial sets are triangulable, I want a lemma: that the realization of a nerve of a poset is triangulable. Basically the idea is that we use the simplicial complex whose vertices are elements of the poset and whose simplices are subsets {x 1,x 2,,x n}\{x_1, x_2, \ldots, x_n\} for which we have a strictly increasing chain x 1<x 2<<x nx_1 \lt x_2 \lt \ldots \lt x_n. Then, the next step would use the following construction: given a simplicial set XX, construct the poset whose elements are nondegenerate simplices (elements) of XX, ordered x<yx \lt y if xx is some face of yy. The claim would be that the realization of XX is homeomorphic to the realization of the nerve of this poset.

    All of this could very well be completely standard, but it’s hard for me to find an account of this in one place. Alternatively, my intuitions might be wrong here. Or, perhaps I’m going about it in a clumsy way.