Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty book bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex-geometry computable-mathematics computer-science constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory history homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTobyBartels
    • CommentTimeJun 15th 2010

    The AnonymousCoward who creates blank pages in places where I ought to write stubs has been at it again, this time at Stone duality.

    • CommentRowNumber2.
    • CommentAuthorHarry Gindi
    • CommentTimeJun 15th 2010

    Why does he do that?

    • CommentRowNumber3.
    • CommentAuthorzskoda
    • CommentTimeJun 15th 2010

    That's how the legends appear in history...

    • CommentRowNumber4.
    • CommentAuthorMike Shulman
    • CommentTimeDec 15th 2010

    I expanded Stone duality somewhat, including some examples (taken from Johnstone’s book) of algebraic theories for which profinite algebras are, and are not, equivalent to Stone topological ones. There is still a lot more to say!

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeJan 18th 2015

    I noticed that the entry Stone duality didn’t mention at all the role of 2\mathbf{2} as a dualizing object. I found discussion of this at BoolAlg, but I seem to remember that we had more on this on the nnLab. If so, it seems hard to find and might need more pointers.

    For the moment I have copied the paragraph titled “Stone duality” at BoolAlg to the section “Stone spaces and Boolean algebras” at Stone duality. The paragraph on profinite sets that used to be at the latter place I have moved down to the section titled “Stone spaces and profinite sets”.

    More could be done here to improve the exposition, I think, but I won’t try to.

    • CommentRowNumber6.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 18th 2015
    • (edited Jan 18th 2015)

    Pursuant to Urs’s remark on 2\mathbf{2}: most such dualities come under the umbrella of Chu space duality, i.e., are restrictions of the *\ast-autonomous duality on Chu 2Chu_2 to suitable full subcategories. I may add a remark on this and link to Pratt’s notes on this.

    • CommentRowNumber7.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 18th 2015
    • (edited Jan 18th 2015)

    Looking over at the concept of “concrete duality” in duality, I don’t think this concept is explained very accurately there. Certainly the concept ought to embrace concrete dualities induced by ambimorphic (or whatever you want to call them) objects, which have to do not exactly with closed monoidal structure but with liftings of contravariant hom-functors. Maybe I’ll try my hand at some rewriting here.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeJan 18th 2015
    • (edited Jan 18th 2015)

    On p. 121 of Lawvere-Rosebrugh, “concrete duality” is used to refer to contravariant functors that deserve to be written V ()V^{(-)}. The text there is shy about stating technical details, the examples spelled out happen in SetSet, but it seemed to me that a charitable formal interpretation of p. 121 would be to read it as referring to contravariant exponentiation in closed categories. At least the point made around that p. 121 does not seem to need ambimorphicity. That would be something to add on top.

    You know the established terminology better than I do. Would be great if you’d find time to expand the entry. But it seems to me that contravariant exponentiation in itself deserves to be regarded as a concept of duality, while homming particularly into ambimorphic objects is a further variant.

    • CommentRowNumber9.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 18th 2015
    • (edited Jan 18th 2015)

    Urs, although I don’t have Lawvere and Rosebrugh in front of me (or even at all), I expect that their VV generally refers to an ambimorphic structure (so living in some concrete categories C\mathbf{C} and D\mathbf{D}) so that C(,V):C opSet\mathbf{C}(-, V): C^{op} \to Set lifts to C opDC^{op} \to D and D(,V):D opSet\mathbf{D}(-, V): D^{op} \to Set lifts to D opCD^{op} \to C, with these liftings forming a contravariant adjunction. “Duality” in the proper sense of the article means that the adjunction is a contravariant equivalence. For example, in this post by Lawvere, he uses the same notation V+exponentiation (NB: the (-)^V he wrote is a typo; he means V^(-)), but where in his case VV is ambimorphically a set and an MM-set with M=hom(V,V)M = \hom(V, V)).

    I would regard duality in your sense via contravariant exponentiation V ()V^{(-)} as a special case of what I’m referring to. In other words, if C\mathbf{C} is (let’s say symmetric) monoidal closed, then the ordinary hom-functor hom(,V):C opSet\hom(-, V): \mathbf{C}^{op} \to Set lifts through hom(I,):CSet\hom(I, -): \mathbf{C} \to Set to an enriched hom-functor ()V:C opC(-) \multimap V: \mathbf{C}^{op} \to \mathbf{C}, so that here we are regarding VV as (C,C)(\mathbf{C}, \mathbf{C})-ambimorphic. I would further note that whatever Lawvere and Rosebrugh are referring to, where you say the examples happen in SetSet, I imagine they are not talking only about sets (since there are no such dualizing objects DD or VV in SetSet, in the sense described at duality), but as sets equipped with some structures.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeJan 19th 2015
    • (edited Jan 19th 2015)

    I’ll be happy about in whatever generality you’ll add it to the entry!

    By the way, I am looking at the text via GoogleBooks. (When GoogleBooks fails me, there are other places to turn to…)

    • CommentRowNumber11.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 19th 2015

    I am not able to access that page through Google books.

    Nevertheless, there is no equivalence SetSetSet \to Set induced by a double dualization in the sense of concrete duality described at duality. I will add to the page later.

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeJan 19th 2015

    Of course there is no such equivalence. I was wondering why you said this, now I saw that the entry had something about involutions at the beginning. I have removed that.

    In that section 7.1 L-R speak about how epis are dual to monos by homming into any VV.

    • CommentRowNumber13.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 25th 2015

    Coming back to this thread, I have completed (for now) my edits at duality that I intended back in #7.

    To say it all properly required a substantial revision of dualizing object, which I have also done.

    • CommentRowNumber14.
    • CommentAuthorMike Shulman
    • CommentTimeJan 25th 2015

    Very nice, thanks!

    • CommentRowNumber15.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 25th 2015

    I added a little bit to dual adjunction.

    • CommentRowNumber16.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMay 8th 2019

    Added a section on Stonean duality

    diff, v25, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)