Author: J-B Vienney Format: MarkdownItexI've just replaced the LaTeX formula $\mathbb{Q}^{+}$ by Q+ in the name of the page.
<a href="https://ncatlab.org/nlab/revision/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+Q%2B+-+algebra/1">v1</a>, <a href="https://ncatlab.org/nlab/show/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+Q%2B+-+algebra">current</a>
I’ve just replaced the LaTeX formula by Q+ in the name of the page.
Author: J-B Vienney Format: MarkdownItexReplaced algebra by associative algebra in order to redirect to the appopriate page
<a href="https://ncatlab.org/nlab/revision/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+Q%2B+-+algebra/1">v1</a>, <a href="https://ncatlab.org/nlab/show/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+Q%2B+-+algebra">current</a>
Replaced algebra by associative algebra in order to redirect to the appopriate page
Author: J-B Vienney Format: MarkdownItexI must replace $+$ by "plus" in the name in order for everything to work...
<a href="https://ncatlab.org/nlab/revision/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+%28Q+plus%29-algebra/1">v1</a>, <a href="https://ncatlab.org/nlab/show/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+%28Q+plus%29-algebra">current</a>
I must replace by “plus” in the name in order for everything to work…
Author: J-B Vienney Format: MarkdownItexMore on the idea.
<a href="https://ncatlab.org/nlab/revision/diff/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+%28Q+plus%29-algebra/2">diff</a>, <a href="https://ncatlab.org/nlab/revision/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+%28Q+plus%29-algebra/2">v2</a>, <a href="https://ncatlab.org/nlab/show/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+%28Q+plus%29-algebra">current</a>
Author: J-B Vienney Format: MarkdownItexAdded equivalence between symmetric and divided powers in symmetric monoidal categories enriched over modules over a $\mathbb{Q}^{+}$-algebra.
<a href="https://ncatlab.org/nlab/revision/diff/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+%28Q+plus%29-algebra/4">diff</a>, <a href="https://ncatlab.org/nlab/revision/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+%28Q+plus%29-algebra/4">v4</a>, <a href="https://ncatlab.org/nlab/show/symmetric+powers+in+symmetric+monoidal+categories+enriched+over+modules+over+a+%28Q+plus%29-algebra">current</a>
Added equivalence between symmetric and divided powers in symmetric monoidal categories enriched over modules over a -algebra.
Author: J-B Vienney Format: MarkdownItexChanged the name of the page (on a work in progress) to a simpler and equivalent one.
<a href="https://ncatlab.org/nlab/revision/diff/symmetric+powers+in+%28Q+plus%29-linear+categories/10">diff</a>, <a href="https://ncatlab.org/nlab/revision/symmetric+powers+in+%28Q+plus%29-linear+categories/10">v10</a>, <a href="https://ncatlab.org/nlab/show/symmetric+powers+in+%28Q+plus%29-linear+categories">current</a>
Changed the name of the page (on a work in progress) to a simpler and equivalent one.
Author: J-B Vienney Format: MarkdownItexChanged one more time the name of this mess to the apparently most appropriate one.
I can't use the singular "symmetric power" because it is about characterizing all the symmetric powers together.
<a href="https://ncatlab.org/nlab/revision/diff/symmetric+powers+in+a+symmetric+monoidal+%28Q+plus%29-linear+category/11">diff</a>, <a href="https://ncatlab.org/nlab/revision/symmetric+powers+in+a+symmetric+monoidal+%28Q+plus%29-linear+category/11">v11</a>, <a href="https://ncatlab.org/nlab/show/symmetric+powers+in+a+symmetric+monoidal+%28Q+plus%29-linear+category">current</a>
Changed one more time the name of this mess to the apparently most appropriate one.
I can’t use the singular “symmetric power” because it is about characterizing all the symmetric powers together.