Author: zskoda Format: MarkdownItexAdded a section with basic references.
* M. E. Sweedler, _Hopf algebras_, Mathematics Lecture Note Series, W. A. Benjamin, 1969
* [[Matthieu Anel]], [[André Joyal]], _Sweedler Theory for (co)algebras and the bar-cobar constructions_, [arXiv:1309.6952](https://arxiv.org/abs/1309.6952)
* D Tambara, _The coendomorphism bialgebra of an algebra_, J. Fac. Sci. Univ. Tokyo Sect. IA Math, __37__, 425-456, 1990 [pdf](https://repository.dl.itc.u-tokyo.ac.jp/record/39399/files/jfs370210.pdf)
* [[Martin Hyland]], [[Ignacio López Franco]], [[Christina Vasilakopoulou]], _Hopf measuring comonoids and enrichment_, Proc. London Math. Soc. __115__:5 (2017) 1118-1148, [doi](https://doi.org/10.1112/plms.12064)
* [[Christina Vasilakopoulou]], _Enrichment of categories of algebras and modules_, [arXiv:1205.6450](https://arxiv.org/abs/1205.6450)
* Marjorie Batchelor, _Measuring coalgebras, quantum group-like objects, and non-commutative geometry_, In: Bartocci, C., Bruzzo, U., Cianci, R. (eds) Differential Geometric Methods in Theoretical Physics. Lecture Notes in Physics __375__ [doi](https://doi.org/10.1007/3-540-53763-5_45); _Measuring comodules - their applications_, J. Geom. Physics __36__:3-4 (2009) 251-269
<a href="https://doi.org/10.1016/S0393-0440(00)00024-3">doi</a>; _Difference operators, measuring coalgebras and quantum group like objects_, Adv. Math. __105__, 190-218 (1994) [pdf](https://core.ac.uk/download/pdf/81927027.pdf)
* Maximilien Péroux , _The coalgebraic enrichment of algebras in higher categories_, J. Pure Appl. Alg. __226__:3 (2022) 106849 [doi](https://doi.org/10.1016/j.jpaa.2021.106849)
* Paige Randall North, Maximilien Péroux, _Coinductive control of inductive data types_, [arXiv:2303.16793](https://arxiv.org/abs/2303.16793)
<a href="https://ncatlab.org/nlab/revision/diff/measuring+coalgebra/8">diff</a>, <a href="https://ncatlab.org/nlab/revision/measuring+coalgebra/8">v8</a>, <a href="https://ncatlab.org/nlab/show/measuring+coalgebra">current</a>
Added a section with basic references.
M. E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, 1969