Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limit limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorzskoda
    • CommentTimeAug 17th 2010

    In gluing categories from localizations (zoranskoda) the main section

    From a family of localizations to a comonad

    is fully rewritten in improved notation. In other way, it is explained better how to get a comonad from a cover of a category by not necessarily compatible flat localizations. This generalizes the Sweedler's coring to relative situations. Now from such data one can make a two category, which I will explain in few days.

    This is a preliminary to something I am writing at the moment namely to explain in such terms actions of comonads and monoidal categories on such descent categories. This part will be analogous to description of equivariant maps among G-manifolds in pairs of local charts, but because of the distributive laws with coherences, the thing complicates.

    • CommentRowNumber2.
    • CommentAuthorzskoda
    • CommentTimeAug 17th 2010

    In fact, because the whole text is part of a long nlab entry in change let me copy here the new inserted section. The very construction in fact does not need flat localization, but a cover of a cartesian category by any family of flat functors (if it is infinite one requires in addition commuting with products of the same size, which in turn are also supposed to exist). Here is the text (for some reason the formula for δ λ\mathbf{\delta}^\lambda did not render, something with **-symbols (until I added this remark!), even after cleaning it, while it does in nlab entry!):

    By a flat localization (functor) we will mean an exact additive functor Q *Q^* having a fully faithful right adjoint Q *Q_*. The composition Q *Q *Q_* Q^* is then often denoted by QQ. A family F λ *:𝒜 λF_\lambda^*: \mathcal{A}\to \mathcal{B}_\lambda, λΛ\lambda\in\Lambda of functors with the same domain is conservative if Q λ *(f)Q^*_\lambda(f) is invertible for all λ\lambda only if ff is invertible. A flat cover of an abelian category 𝒜\mathcal{A} is by definition a conservative family of flat functors F λ:𝒜 λF_{\lambda}:\mathcal{A}\to\mathcal{B}_{\lambda}.

    Localization functors typically do not mutually commute. Namely, given a family of flat localizations Q λ *:𝒜𝒜 λQ_\lambda^*: \mathcal{A}\to\mathcal{A}_\lambda, λΛ\lambda\in\Lambda, the functors Q λQ μ=Q λ*Q λ *Q μ*Q μ *:𝒜𝒜Q_{\lambda} Q_\mu = Q_{\lambda*}Q_\lambda^{*}Q_{\mu*}Q_\mu^*:\mathcal{A}\to\mathcal{A} and Q μQ λQ_\mu Q_\lambda for λμ\lambda\neq\mu are in general not isomorphic. If the family is a cover then define the product category 𝒜 Λ= λΛ𝒜 λ\mathcal{A}_\Lambda = \prod_{\lambda\in\Lambda}\mathcal{A}_\lambda and the functor Q *:𝒜𝒜 Λ\mathbf{Q}^*:\mathcal{A}\to\mathcal{A}_\Lambda, Q *:M(Q λ *M) λ\mathbf{Q}^*:M\to(Q_\lambda^* M)_{\lambda} where the notation (N λ) λ=(N λ) λΛ(N_\lambda)_\lambda = (N_\lambda)_{\lambda\in\Lambda} denotes the ordered Λ\Lambda-tuple in 𝒜 Λ\mathcal{A}_\Lambda. If 𝒜\mathcal{A} has products of families of cardΛ\mathrm{card}\,\Lambda objects, then Q *\mathbf{Q}^* has a right adjoint Q *:𝒜 Λ𝒜\mathbf{Q}_* :\mathcal{A}_\Lambda\to\mathcal{A} given by (M λ) λ λQ λ*M λ(M^\lambda)_\lambda\mapsto \prod_\lambda Q_{\lambda *} M^\lambda. Indeed,

    Hom 𝒜 Λ((M λ) λ,(Q λ *N) λ) := λΛHom 𝒜 λ(M λ,Q λ *N) = λΛHom 𝒜(Q λ*M λ,N) = Hom 𝒜( λ*Q λ*M λ,N)\array{ Hom_{\mathcal{A}_\Lambda}((M^\lambda)_\lambda,(Q^*_\lambda N)_\lambda) &:=& \prod_{\lambda\in\Lambda} Hom_{\mathcal{A}_\lambda}(M^\lambda,Q^*_\lambda N) \\ &=& \prod_{\lambda\in\Lambda} Hom_{\mathcal{A}}(Q_{\lambda*}M^\lambda,N) \\ &=& Hom_{\mathcal{A}}(\prod_{\lambda*}Q_{\lambda *}M^\lambda,N)\,\, }

    The unit η:Id 𝒜Q *Q *:𝒜𝒜\mathbf{\eta}:Id_{\mathcal{A}}\to\mathbf{Q}_*\mathbf{Q}^*:\mathcal{A}\to\mathcal{A} of the adjunction Q *Q *\mathbf{Q}^*\dashv\mathbf{Q}_* is the map induced from the units η λ\eta^\lambda, by the universality of Cartesian product in 𝒜\mathcal{A}, namely η=(η λ) λΛ:M λQ λ*Q λ *M\mathbf{\eta} = (\eta^\lambda)_{\lambda\in\Lambda} : M\to\prod_\lambda Q_{\lambda*}Q^*_\lambda M. The counit ε:Q *Q *Id 𝒜 Λ\mathbf{\epsilon}:\mathbf{Q}^*\mathbf{Q}_*\to Id_{\mathcal{A}_\Lambda} has the components given by the compositions

    ε (N λ) λ:(Q λ * μQ μ*N μ) λ(Q λ *(pr λ)) λ(Q λ *Q λ*N λ) λ(ε λ) λ(N λ) λ\mathbf{\epsilon}_{(N^\lambda)_\lambda} : (Q^*_\lambda\prod_\mu Q_{\mu*} N^\mu)_\lambda \stackrel{(Q^*_\lambda (\mathrm{pr}_\lambda))_\lambda}\to (Q^*_\lambda Q_{\lambda*}N^\lambda)_\lambda \stackrel{(\epsilon^\lambda)_\lambda}\to (N^\lambda)_\lambda

    where in the first functor the projections for the Cartesian product are used.

    Denote Ω:=Q *Q *:𝒜 Λ𝒜 Λ\Omega:= \mathbf{Q}^* \mathbf{Q}_{*} :\mathcal{A}_\Lambda\to\mathcal{A}_\Lambda; then Ω=(Ω,δ,ε)\mathbf{\Omega} = (\Omega,\mathbf{\delta},\mathbf{\epsilon}) is the comonad on 𝒜 Λ\mathcal{A}_\Lambda induced by the adjunction Q *Q *\mathbf{Q}^*\dashv\mathbf{Q}_*, where for each (N λ) λ𝒜 Λ(N^\lambda)_\lambda\in\mathcal{A}_\Lambda the component δ (N λ) λ λ\mathbf{\delta}^\lambda_{(N^\lambda)_\lambda} of the comultiplication δ=Q *ηQ *\mathbf{\delta} = \mathbf{Q}^*\mathbf{\eta}\mathbf{Q}_* is more explicitly the map

    δ (N λ) λ λ=(Q μ *(η λQ λ*N λ ρ) ρ) μ:(Q μ * λQ λ*N λ) μ(Q μ * ρQ ρ*Q ρ * λQ λ*N λ) μ \mathbf{\delta}^\lambda_{(N^\lambda)_\lambda} = (Q_\mu^* (\eta^\rho_{\prod_\lambda Q_{\lambda*} N^\lambda})_\rho)_\mu : (Q^*_\mu\prod_\lambda Q_{\lambda*} N^\lambda)_\mu \to (Q_\mu^* \prod_\rho Q_{\rho*} Q^*_\rho\prod_\lambda Q_{\lambda*} N^\lambda)_\mu

    Again, if each Q μ *Q_\mu^* commutes with Λ\Lambda-products then the products can be placed in front: $( λQ μ *Q λ*N λ) μ( λρQ μ *Q ρ*Q ρ *Q λ*N λ) μ(\prod_\lambda Q^*_\mu Q_{\lambda *} N^\lambda)_\mu \to (\prod_{\lambda\rho}Q_\mu^*Q_{\rho*}Q^*_\rho Q_{\lambda *} N^\lambda)_\mu$

    There is a comparison functor

    K Ω:𝒜(𝒜 Λ) Ω,M(Q *M,Q *(η M))=((Q λ *M) λ,(Q λ *(η M μ) μ) λ);K_{\mathbf{\Omega}}:\mathcal{A}\to(\mathcal{A}_\Lambda)_{\mathbf{\Omega}}, \,\,\,M\mapsto (\mathbf{Q}^*M,\mathbf{Q}^*(\mathbf{\eta}_M)) =((Q_{\lambda}^* M)_\lambda,(Q^*_\lambda(\eta^\mu_M)_\mu)_\lambda);

    under the appropriate (Beck comonadicity criteria) conditions K ΩK_{\mathbf{\Omega}} is an equivalence, with the (quasi)inverse mapping sending an Ω\mathbf{\Omega}-comodule (N,ν)(𝒜 Λ) Ω(N,\nu)\in(\mathcal{A}_\Lambda)_{\mathbf{\Omega}}, into the equalizer of morphisms η Q *N\mathbf{\eta}_{\mathbf{Q}_*N} and Q *(ν):Q *NQ *Q *Q *N\mathbf{Q}_*(\nu) : \mathbf{Q}_* N\to \mathbf{Q}_*\mathbf{Q}^*\mathbf{Q}_* N in 𝒜\mathcal{A}, thus identifying 𝒜\mathcal{A} with the Eilenberg-Moore category of comodules for the comonad Ω\mathbf{\Omega}.