Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nforum nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeAug 18th 2010

    following public demand, I created an entry ordinary differential cohomology.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeApr 18th 2011

    added brief discussion of two of the exact sequences characterizing ordinary differential cohomology

    • CommentRowNumber3.
    • CommentAuthorzskoda
    • CommentTimeApr 20th 2011

    It may be there is a small terminological inconsistency between Idea sections in differential cohomology and ordinary differential cohomology.

    differential cohomology says

    Differential cohomology is a refinement of ordinary cohomology such that a differential cocycle is to its underlying ordinary cocycle as a bundle with connection is to its underlying bundle.

    The best known version of differential cohomology is a differential refinement of generalized cohomology in the sense of the generalized Eilenberg–Steenrod axioms.

    Word ordinary above seems to mean generalized cohomology in the sense of Eilenberg-Steenrod ?

    ordinary differential cohomology says

    Ordinary differential cohomology is the differential cohomology-refinement of ordinary cohomology.

    So here ordinary means really ordinary/classical.

    Phrase differential refinement may mean a construction, or an a priori definition. It is used in ordinary differential cohomology in a phrase that it “exists” so one probably assumes the a priori definition for the case of generalized cohomology theory like in Bunke-Schick. Right ? In that case, Urs, should we make an entry, link or redirect for differential refinement ? I mean, one thing is to go into the whole theory of differential cohomology and how it is constructed and another is just the statement what it a priori means. The entry ordinary differential cohomology seems to be built on the notion of differential refinement, which has to be searched for.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeApr 21st 2011

    Okay, right, “ordinary” means different things here.

    I have changed the first “ordinary” to “plain”, such as to read

    Differential cohomology is a refinement of plain cohomology such that a differential cocycle is to its underlying ordinary cocycle as a bundle with connection is to its underlying bundle.

    The “ordinary” at ordinary differential cohomology I have accompanied with the last words of

    Ordinary differential cohomology is the differential cohomology-refinement of ordinary cohomology, for instance realized as singular cohomology.

    Notice that the paragraph below that is all about the distinction between ordinary and generalized cohomology.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeApr 21st 2011
    • (edited Apr 21st 2011)

    Phrase differential refinement may mean a construction, or an a priori definition. It is used in ordinary differential cohomology in a phrase that it “exists” so one probably assumes the a priori definition for the case of generalized cohomology theory like in Bunke-Schick. Right ?

    Yes. One reason why the entry on differential cohomology is still in such a preliminary state “under construction” is that I am still thinking about how to present it most systematically. Of course I have my own ideas about how to make things systematic in terms of cohesive \infty-toposes, but ignoring that, the state of the literature is slightly inconclusive:

    Hopkins-Singer gave an explicit construction of cocycles and cohomology for differential cohomology. Bunke-Schick rather listed a bunch of axioms they want to have satisfied, and then constructed various models for these. These axioms do not uniquely fix the models, there are slight differences in the various differential K-theories out there.

    It’s good that (if) you are getting interested in this. Somebody should push me to polish up that entry on differential cohomology.

    Maybe next semester I’ll be teaching a master course on this. At the very least by then I should produce decent writeups.

    • CommentRowNumber6.
    • CommentAuthorzskoda
    • CommentTimeApr 21st 2011

    Of course I have my own ideas about how to make things systematic in terms of cohesive \infty-toposes, but ignoring that, the state of the literature is slightly inconclusive

    I am glad somebody spelled this out. When in a cohesive \infty-topos the things are more canonical I had in back of my mind the slight non-uniqueness of the differential refinements of K-theory (if I understood correctly) in the work of Bunke-Schick. On the other hand, I like that they have axiomatics in classical terms, as one indeeds refines classical cohomology.

    • CommentRowNumber7.
    • CommentAuthorjim_stasheff
    • CommentTimeApr 21st 2011
    @ Urs: Hopkins-Singer gave an explicit construction of cocycles and cohomology for differential cohomology. Bunke-Schick rather listed a bunch of axioms they want to have satisfied, and then constructed various models for these. These axioms do not uniquely fix the models, there are slight differences in the various differential K-theories out there.

    see also a paper by Simons and Sullivan

    suggestion of `classical' would indeed remove the ambiguity in `ordinary'
    one could even say old-fashioned :-)
    • CommentRowNumber8.
    • CommentAuthorzskoda
    • CommentTimeApr 21st 2011

    Yes, Jim, Urs is well aware of this situation, I am sure. The fact that the Bunke-Schick axioms do not fix uniquely the differential refinement for all generalized cohomology theories but do fix for some, can be understood in two ways. One that indeed more theories are interesting; and another that we still have to search for axioms in classical setup. Of course, Urs said, the cohesive topos tells you the things canonically, but maybe the classical language can fix it as well. So, the questions is in some sense genuinely open.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeApr 21st 2011

    see also a paper by Simons and Sullivan

    see differential K-theory

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeSep 13th 2020

    added arXiv-pointer and DOI to:

    diff, v20, current

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeApr 15th 2023

    added pointer to this recent preprint:

    diff, v21, current

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeDec 28th 2023

    added pointer to:

    • Byungdo Park, Differential cohomology and gerbes: An introduction to higher differential geometry, lecture notes (2023) [pdf]

    diff, v22, current