Processing math: 100%
Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorMike Shulman
    • CommentTimeOct 10th 2024

    For the purposes of negative thinking, it may be useful to recognise that every -category has a (1)-morphism, which is the source and target of every object. (In the geometric picture, this comes as the (1)-simplex of an augmented simplicial set.)

    Jonathan Arnoult has pointed out on CT Zulip that this is misleading: it sounds like it implies that every -category is monoidal! And John Baez pointed out that the analogy to augmented simplicial sets fails because in an augmented simplicial set each 0-simplex has only one face, rather than a separate “source” and “target” that are both the same (1)-simplex.

    I suggest we just remove this paragraph and the query box following it, since I can’t think of a way to rephrase it that would be more helpful than unhelpful. But I’m open to other suggestions.

    diff, v16, current

    • CommentRowNumber2.
    • CommentAuthorMike Shulman
    • CommentTimeOct 17th 2024

    Nobody made any other suggestions, so I’ve removed the paragraph and the query box as I suggested.

    diff, v17, current