Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorYemon Choi
    • CommentTimeOct 25th 2010

    (First proper post in this forum, hope it's in roughly the right place; if not, passing mods are welcome to move it.)

    Having foolhardily claimed elsewhere that I might have something to add to the nLab page on Banach spaces I have finally got round to getting my hands on a relevant textbook...

    ... but before starting, a question about terminology. As it stands, the category whose objects are Banach spaces and whose morphisms are the short linear maps between them is being denoted by Ban. Now in a couple of sources I used to skim over several years ago, this category was usually denoted by Ban_1, and isomorphism in this category was signified by attaching a subscript `1' to the usual isomorphism sign; the notation Ban was used instead for the category of Banach spaces and continuous linear maps between them. This convention is also the one used in the book which I want to use as a cited reference. (For a lot of functional analysts, "isomorphism of Banach spaces" habitually means "bicontinuous linear isomorphism of the underlying TVSes" and that habit seems to be ingrained - for me at least.)

    So what are people's thoughts? I am more concerned with what will make the page most useful to people, than with debates about the drawbacks of long-established conventions.

    (At least one person reading this ought to recognize "You don't wanna do that!" as a cry I wish I to avoid making or hearing too often...)

    • CommentRowNumber2.
    • CommentAuthorEric
    • CommentTimeOct 25th 2010

    Hi Yemon,

    First, welcome to the forum :)

    Second, when it comes to notation, the nLab has been known to “play Bourbaki” and use the opportunity of these pages to clarify things or choose a particular notation.

    If there are multiple choices of notation appearing in the literature, then it is a good habit to give a nod to those other notations. For example, a statement like, “What we refer to as BanBan here is denoted Ban 1Ban_1 in…”

    Last, but definitely not least, PLEASE do not let notation come in the way of adding content to the nLab. Choose any notation you feel most comfortable with and if there is a need to change it later, that is what the Lab Elves are for :)

    I’d love to read anything you have to say and if someone decides later that a different notation would be better, I’m happy to help modify things later.

    • CommentRowNumber3.
    • CommentAuthorTodd_Trimble
    • CommentTimeOct 25th 2010

    I don’t mind such an alteration, but I’m curious what others will say. Would Ban 1Ban_{\leq 1} get the intended idea across even more so?

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeOct 25th 2010
    • (edited Oct 25th 2010)

    One general comment on notation:

    notation conventions on a wiki can’t work like in a book. Even if you tried to establish a convention, there is no guarantee (and in fact just a slim chance) that everyone who will come after you on this or on some other entry will stick to your convention or even be aware of it.

    So I think the pragmatic way is this: in the controled context of one single entry, establish your notation conventions well-visibly somewhere, and alert the reader if possible that there might be other conventions. Then go ahead and use whichever convention you deem most appropriate.

    If the notation applies to bunch of entries, one could also think of creating a separate page with just the notation conventions, so that one can briefly refer to that.

    • CommentRowNumber5.
    • CommentAuthorAndrew Stacey
    • CommentTimeOct 25th 2010

    With my functional analytic hat on, I would be happy to see BanBan and Ban 1Ban_1. I know that category theorists like to regard Ban 1Ban_1 as “the one true category of Banach spaces”, but there’s enough around here that like a bit of functional analysis that both categories are likely to be used a fair bit in nLab entries that both will need a notation, so BanBan and Ban 1Ban_1 seems a good way to refer to them both cleanly.

    Other than that, I second Urs’ main point: be clear in the specific article and don’t worry too much about the rest of the lab.

    • CommentRowNumber6.
    • CommentAuthorTobyBartels
    • CommentTimeOct 26th 2010

    It seems to me that even functional analysts who interpret ‘isomorphism of Banach spaces’ to mean a bicontinuous linear bijection still regard this as a technical term that doesn’t capture the most general notion of a way that two Banach spaces can be completely equivalent as Banach spaces. Restricting to the case of a single underlying vector space, I know that people will say that two different norms are ‘equivalent’, but sometimes they clarify with an adverb and only metrically equivalent norms are really the same. Generalising again, only a linear surjective isometry really shows that two Banach spaces are the same structure, right? Otherwise nobody would particularly care whether a map is an isometry.

    So writing from the nPOV, I think that we can say, hey, for us ‘isomorphism’ isn’t just a term that you can assign any meaning you want to; it means a way to view two objects as the same. So a Banach space is not just a normaable TVS, and a true isomorphism of Banach spaces must be a linear surjective isometry. This only specifies the groupoid of Banach spaces, but the obvious category of Banach spaces is one whose core is this groupoid. At the same time, of course we explain how functional analysts use terminology as well as the other categories that people study from time to time. Incidentally, the category whose morphisms are continuous linear maps arises nicely as the full image of the faithful functor Ban 1TVSBan_1 \to TVS, so it is a natural object of study from the nnPOV, not something that we should feel at all embarrassed to talk about.

    As for notation, I don’t particularly mind ‘Ban 1Ban_1’, although I wonder if there’s something other than just ‘BanBan’ for its full image in TVSTVS? Maybe ‘Ban bBan_b’ for ‘bounded’? Is there anything in the literature?

    • CommentRowNumber7.
    • CommentAuthorTobyBartels
    • CommentTimeOct 26th 2010

    Another thought: Maybe my understanding of functional analysis is all wrong and people really don’t much care whether a map is an isometry. Perhaps caring about this is really evil in some function-analytic sense, and accepting any bicontinuous linear bijection of Banach spaces (whether or not it’s an isometry) as a way in which they are the same structure is like accepting any equivalence of categories (whether or not it’s an isomorphism) as a way in which they are the same. Perhaps category theorists are forcing functional analysis into a mould where it doesn’t belong. This doesn’t seem likely to me, since I do see functional analysts talking about isometries, but then I also see category theorists talking about isomorphisms of categories. In the end, this is not a matter of mathematical fact but of practice and philosophy.

    • CommentRowNumber8.
    • CommentAuthorTobyBartels
    • CommentTimeOct 26th 2010

    One more idea: Even accepting my argument about what the real groupoid Ban Ban_\sim of Banach spaces is, and seeing that this is the core of Ban 1Ban_1 but not of Ban bBan_b, still there is an important †-category whose underlying category is Ban bBan_b. As the unitary morphisms in this \dagger-category form Ban Ban_\sim, just as the isomorphisms in Ban 1Ban_1 do, it is just as good an ’extra structure’ on top of Ban Ban_\sim.

    So the argument could be: If you really just want a category, then it must be Ban 1Ban_1. But if you want a \dagger-category, then you want Ban bBan_b. (I have just promoted the notation ‘Ban bBan_b’ to mean the \dagger-category, rather than merely the category.)

    Question: Can Ban 1Ban_1 be recovered from Ban bBan_b (including its \dagger)? I don’t see how. Is there a concept that can include all of this structure at once?

    • CommentRowNumber9.
    • CommentAuthorYemon Choi
    • CommentTimeOct 26th 2010

    Hi Toby,

    Glad to have your input. I'll need to reflect on your posts before replying properly, but can I just ask what your dagger operation is supposed to be on $Ban_b$? If it is the usual "take the dual Banach space" functor then this is of course not involutive; there are Banach spaces which are not reflexive.

    • CommentRowNumber10.
    • CommentAuthorMike Shulman
    • CommentTimeOct 26th 2010

    It seems to me that the category of Banach spaces and continuous linear maps would be better called the category of “Banachable topological vector spaces.” A Banach space is a TVS equipped with a complete norm generating the topology, so a morphism (and in particular an isomorphism) of Banach spaces should preserve the norm, whereas a continuous map is merely preserving the underlying topology.

    • CommentRowNumber11.
    • CommentAuthorAndrew Stacey
    • CommentTimeOct 26th 2010

    Mike, you’re right. I tried to be honest about this in my diagram of LCTVS properties. It’s like the difference between a metric space and a metrisable one.

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeOct 26th 2010
    • (edited Oct 26th 2010)

    Andrew,

    would it make sense to add a tad of a guiding comment to that (otherwise beautiful) entry? Maybe at least a sentence saying: “The following table shows … “.

    • CommentRowNumber13.
    • CommentAuthorAndrew Stacey
    • CommentTimeOct 26th 2010

    I need to remind myself of the status of that diagram. The intention was that it be included in some surrounding page (probably LCTVS) once it was finished. I need to read back in the related nForum discussion to remind myself what was going on when I did the diagram - I remember I was having fun talking functional analysis with Tim van Beek, but it stalled, maybe the semester started or I went on holiday or something. Now that Yemon’s interested in expanding some of the entries, I’ll try to get back “into the groove”.

    (Have a bit of an essay crisis at the moment - due in on Thursday, so I’ll be a bit more coherent after that.)

    On the general point of having an explanation on the diagram, I’m against that because the source of that page can be automatically generated from another page using Graphviz, much like the knot pictures I did a week or so ago can be generated from their TikZ source. So if the source gets modified, at the moment it’s really easy to update the diagram. But if we add stuff to the actual diagram, it gets harder to keep things in step. But we can always include the diagram in a container page that just says “This diagram is of …”. Not sure if this paragraph is coherent …

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeOct 26th 2010

    Ah, okay, I didn’t rememeber that this was to be included elsewhere.

    Speaking of Tim van Beek: too bad that he is no longer hanging around. It had been good to have him here.

    • CommentRowNumber15.
    • CommentAuthorYemon Choi
    • CommentTimeOct 26th 2010
    • (edited Oct 27th 2010)

    Thanks for the feedback and kind remarks, everybody. Here are some haphazard thoughts of my own:

    A part of me agrees with Mike that the category of "Banach spaces and continuous linear maps" should have been called the category of "completely normable TVSes and continuous linear maps". Perhaps I will try to use that terminology; but the fact remains that the earlier inaccurate terminology has arguably stuck.

    (See also the marked paucity of textbooks which talk about "contra-homology", despite Peter Hilton's efforts. Or the fact we use "limit" rather than Freyd's preferred "root"...)

    I am interested in Toby's idea that, in some inchoate sense, a lot of functional analytic treatment of/preoccupation with Banach spaces has really been about TVSes where the topology comes from some choice of Banach space structure, picked for convenience like a basis. Yet as he says, one does care when certain Banach spaces are "isometrically isomorphic", sometimes for technical reasons and sometimes for deeper ones (it seems). I'm as much in the dark as you guys, in some respects.

    My own contention is that the two categories - which I am tempted to call Bang (short linear maps) and Bant (all continuous linear maps) - are both interesting for different reasons, and one wants to have both at hand rather than insist on one or other being "the" true category. (For a start, Bant has a closed structure, which seems to be absent from Bang - the set Bang(X,Y) is not a vector space, and trying to equip it with the structure of a Banach space just seems to lead back to Bant. The definition of spectrum of an operator seems to live in Bant (or Vect) not in Bang; as does the statement that finite-dimensional Banach spaces are nuclear. On the other hand, it is Bang which is small complete, small co-complete, supports decent comonads, and so on.)

    • CommentRowNumber16.
    • CommentAuthorDavidRoberts
    • CommentTimeOct 27th 2010

    Comment/question at projective Banach space.

    • CommentRowNumber17.
    • CommentAuthorYemon Choi
    • CommentTimeOct 27th 2010
    • (edited Oct 27th 2010)

    Have left a meandering reply to David at projective Banach space and tried to start adding some of the missing detail. Thanks also to Urs for cleaning up the page and putting in all the links I’d rather lazily omitted.

    • CommentRowNumber18.
    • CommentAuthorTobyBartels
    • CommentTimeOct 28th 2010

    @ Yemon:

    The dagger structure must be the identity on objects, so what I wrote doesn’t actually work. I basically copied my comment from a previously understood (never written down by me, but previously thought through in my head) statement about HilbHilb, where it is accurate.