Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeOct 26th 2010

    added to van Kampen theorem a clean statement for the group-version

    • CommentRowNumber2.
    • CommentAuthorMike Shulman
    • CommentTimeJul 23rd 2012

    In light of the discussion around higher homotopy van Kampen theorems, I have expanded van Kampen theorem to distinguish more clearly the homotopy version from the strict version, and included a proof of how to get from the homotopy version to the strict one. This is kind of like the proof I gave on MO for how to get the classical strict version out of something like Lurie’s version, but simpler (one doesn’t have to introduce higher toposes if all one wants is a statement about 1-groupoids!); it’s basically what is done in Dror Farjoun’s paper, cleaned up with some model-category language. I think Dror isn’t fully explicit about how the set of basepoints is dealt with, although he does discuss them at least in the context of the 0-skeleton of a complex in the published version (which is different from the draft version which used to be the one linked on the page).

    • CommentRowNumber3.
    • CommentAuthorMike Shulman
    • CommentTimeJul 23rd 2012

    Pasted here an old discussion from the page:


    Ronnie This paper does not seem to mention the fundamental groupoid on a set of base points. Is there a version of the result on homotopy colimits for many base points?

    The original idea for many base points was to calculate the fundamental group of the circle via a van Kampen type theorem for non connected spaces: this required the many base point version.

    It seems useful to use π 1(X,X 0)\pi_1(X,X_0) where X 0X_0 is chosen according to the geometry at hand, usually somewhere between a single point and the whole space. Grothendieck agreed!

    Arguments for (and against!) groupoids are more fully set out on http://www.bangor.ac.uk/r.brown/gpdsweb.html.

    Mathieu I don’t think one need to use a set of base points in the case of homotopy colimits, since in this case we work up to equivalences of groupoids. If you apply π 1\pi_1 to the circle presented as the homotopy pushout of the map 212\to 1 along itself (where 22 is the discrete space on two elements), you get a groupoid equivalent to the (bicategorical) pushout in the 2-category of groupoids of 212\to 1 along itself (this time, seen as discrete groupoids), which is (up to equivalence) the group Z\Z seen as a one-object groupoid.

    Ronnie This all seems more complicated than the statement: the group Z\Z is up to isomorphism obtained from the unit interval groupoid II by identifying 0 and 1, in the category of groupoids. Analogous lower dimensional identifications become more significant in the applications of higher homotopy van Kampen theorems, which allow for some computations for example of homotopy 2-types, not so far obtained by homotopy colimit methods. These require higher homotopy groupoids for their proof.

    The many base point case is used in proving subgroup theorems in group theory. Higgins also gave in 1976 a very nice normal form for the fundamental groupoid of a graph of groups; since a graph has vertices, is is not surprising that this groupoid has the same vertices as the graph. This elegant idea has been ignored by the experts in that area.

    I agree that homotopy colimits are interesting. For example, I like to consider the trefoil groupoid TT which is the homotopy pushout in the category of groupoids of the two maps ZZ\Z \to \Z given by multiplication by 2 and by 3. There are advantages in keeping this with two objects, as reducing to the trefoil group loses some structure, such as the distinction between two generators.

    Similarly, it is convenient to consider π 1(Δ n,Δ 0 n)\pi_1(\Delta^n, \Delta^n_0), the fundamental groupoid of the nn-simplex on its set of vertices. This keeps the geometry of the simplex. So the nerve of a groupoid GG is the simplicial set which in dimension nn is Gpd(π 1(Δ n,Δ 0 n),G)Gpd(\pi_1(\Delta^n, \Delta^n_0),G).

    For all I know, there may be advantages in replacing loop space theory by a many-pointed theory, involving the structures which arise from considering all paths, and even all cubes, between the base points!

    Quickly reducing a groupoid to one object is to me a bit like always choosing a basis for a vector space.

    • CommentRowNumber4.
    • CommentAuthorDavidRoberts
    • CommentTimeJul 22nd 2019

    Fixed link whose markdown syntax had been broken by the change < maspto\maspto &lt; etc.

    diff, v26, current

  1. added links to formalization of the van Kampen theorem in Agda and in Lean

    Anonymous

    diff, v30, current

  2. added reference to the van Kampen theorem in homotopy type theory

    Anonymous

    diff, v30, current

  3. adding a brief section on the van Kampen theorem in homotopy type theory

    Anonymous

    diff, v30, current

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeNov 25th 2024
    • (edited Nov 25th 2024)

    added pointer to the original references

    • Herbert Seifert: Konstruction drei dimensionaler geschlossener Räume, Berichte Sachs. Akad. Leipzig, Math.-Phys. Kl. 83 (1931) 26–66

    • Egbert van Kampen: On the connection between the fundamental groups of some related spaces, American Journal of Mathematics 55 (1933) 261–267 [jstor:51000091]

    and to:

    diff, v32, current