Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nforum nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeNov 4th 2010

    I am in the process of reproducing the proof of the main theorem in Schwede-Shipley’s “Equivalence of monoidal model categories” at monoidal Quillen adjunction (see the references and pointers given there).

    I find that there are some intermediate steps that need to be filled in and which require a tad more thinking than just copying what they write.

    This mainly concerns some pure category-theoretic arguments about adjunctions, which is entirely independent of the model category theoretic argument that is later built on it. I am saying this in case you are an expert eager to help on some pure category theory issues but maybe not so much into model category theory.

    I think I can figure things out myself eventually, but since I am a bit time pressured and since working toghether is fun anyway, I thought I’d just highlight here what I am doing and where there is still things remaining to be done.

    So I am working on the section Lift to Quillen adjunction on monoids. This breaks up the Schwede-Shipley argument into a bunch of small lemmas and propositions and aims to write out the proofs. Partly this is spelled out. Whenever there is a gap in the argument that still needs to be written up or even figured out, I put ellipses

      (...)
    

    for the moment. I’ll be working now on filling these ellipses with content, so where exactly you see them may change over time. But if you feel you can easily help fill some of them, you are kindly invited to do so!