Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science connection constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality education elliptic-cohomology enriched fibration foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monad monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeDec 1st 2010

    added the full definition to factorization algebra

    • CommentRowNumber2.
    • CommentAuthorzskoda
    • CommentTimeDec 1st 2010
    • (edited Dec 1st 2010)

    I added to factorization algebra today's reference from the arxiv:

    • Gregory Ginot, Thomas Tradler, Mahmoud Zeinalian, Derived higher Hochschild homology, topological chiral homology and factorization algebras, arxiv/1011.6483

    By the way, I find it useful that in the links for arxiv papers the number is seen/printed.

    • CommentRowNumber3.
    • CommentAuthorzskoda
    • CommentTimeMar 9th 2011
    • (edited Mar 9th 2011)

    This is quite interesting (slides, related subject):

    http://www.ms.u-tokyo.ac.jp/~makoto/Tsukuba.pdf

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeJun 18th 2011

    I have briefly added at factorization algebra a pointed to Gaitsgory-Francis.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeJun 18th 2011

    also to chiral algebra

    • CommentRowNumber6.
    • CommentAuthorjim_stasheff
    • CommentTimeJun 19th 2011
    http://www.ms.u-tokyo.ac.jp/~makoto/Tsukuba.pdf

    that link doesn't work
    and I can't find that pdf on his home page
    • CommentRowNumber7.
    • CommentAuthorzskoda
    • CommentTimeJun 19th 2011
    • (edited Jun 19th 2011)

    Maybe he changed the affiliation and lost the account. Google for te search

    Tsukuba Makoto site:www.ms.u-tokyo.ac.jp

    still gives the above URL as the first hit, so the change must have been very recent. The title of the document Tsukuba.pdf is “Recent developments of chiral categories”. Makoto also has a blog

    http://makotosakurai.blogspot.com (maybe we should list it under math blogs ? but it seems to be inactive for a while)

    where at http://makotosakurai.blogspot.com/2009/07/recent-developments-of-chiral.html is an entry on this topic with the same obsolete pdf link as above.

    • CommentRowNumber8.
    • CommentAuthorzskoda
    • CommentTimeAug 30th 2016

    A higher-dimensional generalization of vertex algebras is suggested in the framework of factorization algebras in

    We introduce categories of weak factorization algebras and factorization spaces, and prove that they are equivalent to the categories of ordinary factorization algebras and spaces, respectively. This allows us to define the pullback of a factorization algebra or space by an 'etale morphism of schemes, and hence to define the notion of a universal factorization space or algebra. This provides a generalization to higher dimensions and to non-linear settings of the notion of a vertex algebra.

    • CommentRowNumber9.
    • CommentAuthorzskoda
    • CommentTimeMar 28th 2018

    More references listed at factorization algebra.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)