Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality education elliptic-cohomology enriched fibration foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes science set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeDec 7th 2010
    • (edited Dec 7th 2010)

    I added a bunch of entries to homotopy - contents – mostly all the variants of homotopy groups – and inserted the floating TOC to all pages listed there

    • CommentRowNumber2.
    • CommentAuthorTim_Porter
    • CommentTimeDec 7th 2010

    One result of that list is that the actual theory of homotopy seems to divided into three parts, none of which actually handles the central case, i.e. homotopy theory per se!. Although this is fine and not at all serious, it might look a bit odd to a ’visitor’ and I am not sure how to fix the oddness. We could have the main homotopy theory page saying something motivational, with the current homotopy theory page being renamed to ’Standard homotopy theory and the n-POV’ and direct the browsing reader to standard texts such as Hatcher for their introduction to homotopy theory as such in the outside /entry level page. As this would mean a structural change, we should probably discuss it briefly, before doing anything (or nothing) but in any case it is not a serious oddness, so can be left ’as is’.

    • CommentRowNumber3.
    • CommentAuthorzskoda
    • CommentTimeDec 13th 2010

    I agree, at list a link to algebraic topology should be included but it is not clear where.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeDec 13th 2010

    make a suggestion for how to reorganize things.

    • CommentRowNumber5.
    • CommentAuthorTobyBartels
    • CommentTimeDec 13th 2010
    • (edited Dec 13th 2010)

    I put in a couple of headers to fix the impression that homotopy theory is divided into three parts and to find a place for algebraic topology. This probably doesn’t fix everything, however!

    • CommentRowNumber6.
    • CommentAuthorzskoda
    • CommentTimeDec 13th 2010

    4: As I stated in 3, it is not clear to me where to include it, so I can not suggest where (the organization over there is rather different than the way I understand/classify the things.), but rather only that I feel it should be somewhere there.

    • CommentRowNumber7.
    • CommentAuthorTim_Porter
    • CommentTimeDec 13th 2010

    As homotopy theory was originally part of algebraic topology, perhaps the answer is already at hand. The Alg. Top. entry looks quite good. (Perhaps leave it as it is.) The next problem is that homotopy theory only really considers the models category nPOV approaches, which is fine until one tries to link to the more classical treatment of homotopy theory, and even algebraic homotopy theory does not fit into the current framework. We may need another entry with a historical or classical over view of homotopy theory. I do not really like restricting homotopy theory to be just the QMC stuff as there is a lot more to it than that, but that is the name of the page and I do not fancy looking through the rest of the Lab to change all the links. A possible disambiguation would be to add something like ‘This page discusses the Theory of Homotopy Theories, as derived from the homotopical algebra approach to the subject. For other topics within the general area of Homotopy Theory look at the list of related entries.’ I will copy that over and see how it looks to you all.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)