Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorFinnLawler
    • CommentTimeJan 9th 2011

    New page at sesquicategory.

    • CommentRowNumber2.
    • CommentAuthorTobyBartels
    • CommentTimeJan 9th 2011

    What’s the reason for this name? (See my addition to the Remarks.)

    • CommentRowNumber3.
    • CommentAuthorMike Shulman
    • CommentTimeJan 9th 2011

    I presume the reason is that it’s “part of the way” from a 1-category to a 2-category; you add the 2-cells and some of the structure, but you leave out one of the axioms.

    The second and third definitions given there are a bit tricky if you want to define a weak sesquicategory, yes? Since such need not have an underlying 1-category.

    • CommentRowNumber4.
    • CommentAuthorTobyBartels
    • CommentTimeJan 9th 2011

    I would presume that, except that to mind it goes the wrong way. 22-categories are more general than 11-categories, and sesquicategories are more general still.

    However, I can see that from a strict perspective, it could go as you say. A strict 22-category has an underlying 11-category, etc.

    • CommentRowNumber5.
    • CommentAuthorFinnLawler
    • CommentTimeJan 9th 2011

    I’ve added a fourth definition, which I unaccountably omitted last night, in which a sesquicategory is a category enriched in Cat with the other tensor product (whose corresponding internal hom gives categories of ’unnatural’ transformations). Apparently this and the usual one are the only monoidal closed structures on Cat. I haven’t checked yet, but maybe this is the right way to define weak sesquicategories.

    I’ve also added a link to a cat-list discussion that explains the origin of the name.

    • CommentRowNumber6.
    • CommentAuthorMike Shulman
    • CommentTimeJan 10th 2011

    Toby, while it’s true that 2-categories are a generalization of 1-categories, I don’t usually think of them that way. Instead I think of them as 1-categories with additional extra structure (or stuff, or whatever), which is also true. From that perspective, sesquicategories do sit in between 1-categories and 2-categories.

    • CommentRowNumber7.
    • CommentAuthorTobyBartels
    • CommentTimeJan 11th 2011
    • (edited Jan 11th 2011)

    I think of them as 1-categories with additional extra structure (or stuff, or whatever), which is also true.

    This is only true for strict 22-categories. In contrast, thinking of 11-categories as 22-categories with an extra property works both strictly and weakly; and furthermore it is a very important perspective when thinking about higher categories. (All of Lurie’s and Urs’s work in generalising from 11-categories to (,1)(\infty,1)-categories implicitly takes this perspective.)

    None of this contradicts what you’ve said, but I’m honestly surprised that you usually think of (even strict) 22-categories in this way!

    By the way, I am not suggesting changing the name; I just wanted to see where it came from. It’s a name that I very much doubt will generalise, but it uses grammar which would be hard to generalise anyway. If we later come up with something that really deserves the name 1121\frac{1}{2}-category, then we can still ignore the Latin and just use that.

    I’ve edited the Remark just a bit.

    • CommentRowNumber8.
    • CommentAuthorMike Shulman
    • CommentTimeJan 11th 2011

    This is only true for strict 2-categories.

    It depends on what forgetful functor 2Cat -> Cat you are thinking of. It’s true that only strict 2-categories have an underlying 1-category obtained by simply discarding the 2-morphisms, but weak 2-categories still have a “homotopy” 1-category obtained by identifying isomorphic 1-morphisms and then discarding the 2-morphisms. The first functor is right adjoint to the inclusion of 1-categories into strict 2-categories; the second is left adjoint if you restrict it to (2,1)-categories.

    What I wrote in #6 is an exaggeration; I think both perspectives are important. But not infrequently I find myself doing things with 2-categories that are analogous to things that one does with 1-categories, but do not reduce to their 1-categorical correspondents when applied to locally discrete 2-categories, and I would argue that the same is true of Lurie and Urs. For instance, a 1-topos, regarded as a locally discrete 2-category, is not a 2-topos.

    I don’t really like the name “sesquicategories” either, but for a different reason: regardless of whether they are more or less general than 2-categories, their difference from 2-categories is not really in an “up-or-down” direction!

    • CommentRowNumber9.
    • CommentAuthorTobyBartels
    • CommentTimeJan 11th 2011

    But not infrequently I find myself doing things with 2-categories that are analogous to things that one does with 1-categories, but do not reduce to their 1-categorical correspondents when applied to locally discrete 2-categories, and I would argue that the same is true of Lurie and Urs.

    Sure. But in those cases, one should change the name of the concept, because it is not the same concept but merely an analogous one. Whereas, when they do so reduce, then we keep the old name, because now it is the same concept applied in a more general context.

    • CommentRowNumber10.
    • CommentAuthorMike Shulman
    • CommentTimeJan 11th 2011

    I don’t really see how the issue of renaming or not is relevant to the question of how 2-categories are related to 1-categories?

    • CommentRowNumber11.
    • CommentAuthorzskoda
    • CommentTimeJan 11th 2011
    • (edited Jan 11th 2011)

    I think sesquicategory is somewhat standard term in Australian category theory school. It has enough of general feeling that it is remembrable. I mean it reminds to roughly the right thing. So why should we play Bourbaki and correct the Australians (as if most of the terminology in mathematics were entirely logically ordered) ?

    • CommentRowNumber12.
    • CommentAuthorMike Shulman
    • CommentTimeJan 12th 2011

    I don’t think anyone was proposing to rename it, just having fun complaining about the existing name. (-:

    • CommentRowNumber13.
    • CommentAuthorzskoda
    • CommentTimeJan 12th 2011

    12 :) That was instructive, I mean all the comments…

    • CommentRowNumber14.
    • CommentAuthorTobyBartels
    • CommentTimeJan 12th 2011

    @ Zoran #12:

    Agreed, let’s not rename it.

    @ Mike #10:

    It’s when things are not renamed that we see that people think of things as being (not merely analogous but) the same, in the sense of being special cases (possibly one of the other, possibly both of some more general situation). We abandon the historical terms ‘22-functor’ and ‘bifunctor’ for ‘functor’, since we recognise a functor between 11-categories as a special case of a functor between 22-categories, so the latter is the same thing as the former, deserving of the same name. In contrast, things which are merely analogous get new names.

    I agree that both perspectives are useful. But I have a pretty clear idea in my mind which one is primary, and I’m surprised that you have a different idea, especially given that you were the one who clarified for me how the names ought to work.

    • CommentRowNumber15.
    • CommentAuthorMike Shulman
    • CommentTimeJan 12th 2011

    We abandon the historical terms ‘2-functor’ and ‘bifunctor’ for ‘functor’, since we recognise a functor between 1-categories as a special case of a functor between 2-categories

    That’s not what I would say. I would say that we abandon those terms because a functor between 2-categories, as we mean it, is the most appropriate notion of morphism between 2-categories, analogously to functors between 1-categories. It happens that when we regard 1-categories as particular 2-categories, functors of 2-categories reduce to functors of 1-categories, and that’s certainly a good thing that avoids confusion, but it’s not a prerequisite to usage of the unqualified “functor.”

    There are other situations in which we use unqualified words in a generalized context that don’t reduce to the previous notions when specialized. For instance, a span between two groupoids does not reduce to a span between two sets when the groupoids are discrete. A profunctor between 2-categories does not reduce to a profunctor between 1-categories when the 2-categories are discrete. And even with ordinary functors, for an arbitrary enriching category V, a functor between V-categories need not reduce to an ordinary functor when the V-categories are “discrete.”

    especially given that you were the one who clarified for me how the names ought to work.

    What are you referring to? I want to know if I’m being inconsistent… (-:

    • CommentRowNumber16.
    • CommentAuthorTobyBartels
    • CommentTimeJan 12th 2011
    • (edited Jan 13th 2011)

    Your first paragraph is again quite surprising to me! Maybe I’m just very mixed up about what you used to say; in the extreme case, maybe I’m mixing you up with somebody else (but I’m sure that it was you, really).

    For instance, a span between two groupoids does not reduce to a span between two sets when the groupoids are discrete.

    True, but this is because ‘span’ is an extremely general term that makes sense in any \infty-category, here applied to GrpdGrpd and SetSet. You’re right that it’s an exception to the rule that I stated, however. (So is the profunctor example, although I never heard you apply this —and never meant to extend it myself— to general enriched categories.)

    What are you referring to?

    It’s spread out over naming discussions that are organised by the thing being named, not the principle at play, but I’ll see if I can find something definitive.

    • CommentRowNumber17.
    • CommentAuthorTobyBartels
    • CommentTimeJan 13th 2011
    • (edited Jan 13th 2011)

    OK, you state the principle at n-prefix (michaelshulman). I’ll quote the entire second paragraph:

    If X has a meaning for 1-categories, then if X is used without a prefix for 2-categories it should include the existing notion for 1-categories as a special case (when 1-categories are considered as homwise-discrete 2-categories). If we consider a notion related to X but which is not a “conservative categorification” in this sense, we will call it 2-X; cf. subcategory (nlab). For instance, we say regular 2-category since a 1-category is regular as a 2-category iff it is regular as a 1-category, but 2-exact 2-category since an exact 1-category is almost never 2-exact as a 2-category.

    For the cited discussion at subcategory, it’s probably better to read a forum comment by you. While functions have images, functors have both 11-images and 22-images; as you explain, we know which is which by using the convention that the 11-image of a functor between discrete categories is the same as the image of the corresponding function between sets. You then apply this to the term ‘subcategory’. (So you don’t limit this principle only to your exposition of 22-topos theory.)

    Also explained at that comment (which I had forgotten) is that it’s important to write BG\mathbf{B}G when interpreting GG as a category, in part because the numbering doesn’t correspond in this case. (And indeed, a group is not a category with extra property but a category with extra structure, since it’s really a pointed category with extra property, and BG\mathbf{B}G is simply its underlying category, an observation also due to you. So in both cases, we get the rule that terms are preserved when interpreting an A as a B with extra property but not when interpreting an A as a B with extra structure.)

    It is reading all that, as well as other applications of the same principle, that made me unprepared for #6.

    • CommentRowNumber18.
    • CommentAuthorMike Shulman
    • CommentTimeJan 13th 2011

    Hmm, interesting. Possibly I’ve gotten looser with terminology over time, although I still do agree with that principle in general. But I also don’t feel a contradiction between wanting terminology for 2-categories to reduce to existing terminology for locally discrete ones, but sometimes regarding 2-categories as 1-categories with extra stuff. In fact, of course, it often happens that “an X with extra stuff” is a generalization of an X, if we can take the extra stuff to be “trivial” in some canonical way. Though I can see that there is some interesting interplay.

    • CommentRowNumber19.
    • CommentAuthorTobyBartels
    • CommentTimeJan 15th 2011

    Possibly I’ve gotten looser with terminology over time

    Possibly. But I realised that the principle was fresh in my mind when you wrote the surprising comment #6 because you had (quite correctly) chastised me with it barely a week earlier here.

    I also don’t feel a contradiction between wanting terminology for 2-categories to reduce to existing terminology for locally discrete ones, but sometimes regarding 2-categories as 1-categories with extra stuff.

    I agree, but “sometimes regarding” is weaker than “usually think”.

    • CommentRowNumber20.
    • CommentAuthorMike Shulman
    • CommentTimeJan 15th 2011

    but “sometimes regarding” is weaker than “usually think”.

    Yes, and I agreed in #8 that #6 was overstated.

    • CommentRowNumber21.
    • CommentAuthorTobyBartels
    • CommentTimeJan 16th 2011

    That’s right, you did; everything’s OK.

    • CommentRowNumber22.
    • CommentAuthorFinnLawler
    • CommentTimeJan 28th 2011

    I’ve rearranged the Definition section at sesquicategory, to make it clear that there are essentially two definitions and not four.

    • CommentRowNumber23.
    • CommentAuthorvarkor
    • CommentTimeSep 1st 2023

    Added a cross-reference to funny tensor product.

    diff, v13, current

    • CommentRowNumber24.
    • CommentAuthorBryceClarke
    • CommentTimeOct 26th 2023

    I was tidying up the references but couldn’t find any link to the published version of:

    • John Stell, Modelling Term Rewriting Systems by Sesqui-Categories, Proc. Categories, Algebres, Esquisses et Neo-Esquisses (1994).

    Does anyone know where to find it?

    diff, v14, current

    • CommentRowNumber25.
    • CommentAuthorUrs
    • CommentTimeOct 26th 2023

    On the very bottom of the webpage here, the page’s author (apprently Pierre Ageron) says that hard copies of the book collection Catégories, algèbres, esquisses et néo-esquisses (1994) which he edited may be obtained on request.

    That’s the best I could find. The usual pirate sites do not seem to have electronic copies of this book.

    • CommentRowNumber26.
    • CommentAuthorBryceClarke
    • CommentTimeOct 26th 2023

    I will send him an email and see what happens.

    • CommentRowNumber27.
    • CommentAuthorUrs
    • CommentTimeOct 26th 2023

    Great. Maybe ask him for permission to scan and upload the whole book. Looks like this would be worthwhile, also for the contributing authors.

    • CommentRowNumber28.
    • CommentAuthorBryceClarke
    • CommentTimeOct 26th 2023

    I have sent the email, including a request to scan and upload the volume.

    • CommentRowNumber29.
    • CommentAuthorBryceClarke
    • CommentTimeOct 26th 2023
    • (edited Oct 26th 2023)

    I received the following reply from Pierre:

    Dear Bryce,

    You take me back many years. But yes, I think there are still a few copies in my office at the university of Caen, and I’ll be happy to send you one of them! However I am in Morocco until November, 5, so you have to wait a little. But I won’t forget, immediately after coming back.

    Also, scanning the whole volume is certainly a good idea.

    • CommentRowNumber30.
    • CommentAuthorUrs
    • CommentTimeOct 26th 2023

    Sounds good. Looks like it’s high time to save this book from being lost to history.

    • CommentRowNumber31.
    • CommentAuthorBryceClarke
    • CommentTimeNov 20th 2023

    Uploaded PDF scan of the following reference:

    • John Stell, Modelling Term Rewriting Systems by Sesqui-Categories, Proc. Catégories, Algèbres, Esquisses et Néo-Esquisses (1994). [(pdf)]

    diff, v15, current

    • CommentRowNumber32.
    • CommentAuthorBryceClarke
    • CommentTimeNov 20th 2023

    Additional context Re: 31.

    I have received the entire volume of Catégories, Algèbres, Esquisses et Néo-Esquisses from Pierre Ageron. The volume is ~141 pages and contains a number of interesting abstracts in French and English. I intend to scan the entire volume when time allows.

    • CommentRowNumber33.
    • CommentAuthorUrs
    • CommentTimeNov 20th 2023

    Thanks for doing this!