Want to take part in these discussions? Sign in if you have an account, or apply for one below
Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.
I have expanded the entry formally smooth morphism:
I have first of all added the general-abstract formalization by Kontsevich-Rosenberg, taking the liberty of polishing it a bit from Q-category language to genuine (cohesive) topos-theoretic language and making contact with the notion of infinitesimal cohesion .
Then I added their theorems about how the general abstract topos-theoretic definitions do reproduce the traditional explicit notions.
Except for one clause : in prop. 5.8.1 of Noncommutative spaces they show that the correct notion of formal smoothness for morphisms is reproduced in the non-commutative case (via the relative Cuntz-Quillen condition). But for the commutative case I see the corresponding statement only for objects (in section 4.1) not for morphisms.
Zoran, do you know if they also discuss the relative version in the commutative case? Maybe it’s trivial, I haven’t thought it through yet.
1 to 1 of 1