Want to take part in these discussions? Sign in if you have an account, or apply for one below
Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.
New microstubs S-category, separable coring and finally some substantial material at separable functor at last. The monograph by Caenapeel, Militaru and Zhu listed at separable functor studies Frobenius functors and separable functors in parallel; there are relations in a number of interesting situations. Frobenius functors are those where left and right adjoint are the same (hence in particular we have adjoint n-tuple for every $n$). Separable is a notion which is about certain spliting condition. This spliting is of the kind as spliting in Galois theory, I mean the Grothendieck’s version of classical Galois theory involves separable algebras at one side of Galois equivalence.
S-category due Tomasz Brzeziński is a formalism something similar to Q-categories of Alexander Rosenberg. Tomasz studies formal smoothness and separability in the setup of abelian categories, motivated by corings, Hopf algebras and similar applications. I would guess that understanding those could be useful into better understanding the Galois theory in cohesive topos, but I do not know.
I also created Maschke’s theorem which is one of the motivations for separable functors.
1 to 1 of 1