Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorzskoda
    • CommentTimeMay 1st 2011

    New entry characteristic class of a structure to complement characteristic class and historical note on characteristic classes. I did not link to it from outside so far.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeMay 1st 2011
    • (edited May 1st 2011)

    Hi Zoran,

    thanks for the reference.

    Notice that, once again, under the Grothendieck construction this comes down to the same story as at characteristic class:

    what you write H\mathcal{H}_H is just the Grothendieck construction of the presheaf HH (its category of elements) (notice you need HH to be contravariant for the formula you give to make sense) and 𝒮\mathcal{S} should also be assumed to be a fibered category, I assume, corresponging under the reverse Grothendieck construction to a sheaf/stack F 𝒮F_{\mathcal{S}} on 𝒯\mathcal{T}.

    So under the Grothendieck construction a characteristic class in the sense of the article by Fuks that you mention is the same as a morphism

    F 𝒮H F_{\mathcal{S}} \to H

    in the topos over 𝒯\mathcal{T}. So it’s exactly as defined at characteristic class.

    I’ll add the reference with that interpretation now to the latter entry, if you allow.

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeMay 1st 2011

    okay, I have added the discussion to characteristic class.

    I was going to add also a criticism about how Fuks’s definition is not local/excisive as long as it restricts to cohomology classes instead of cocycles, but then I figured I shouldn’t do that with having seen just a second-hand summary of one part of the paper.

    • CommentRowNumber4.
    • CommentAuthorzskoda
    • CommentTimeMay 1st 2011
    • (edited May 1st 2011)

    I’ll add the reference with that interpretation now to the latter entry, if you allow.

    Of course, this is why I did not write in the personal part of the nnLab. It is good for students to have access to 1-categorical approach. I saw immediately that it is about fibered categories (does this reformulation make it possible without “concrete” assumption ?; originally Fuks works just with abelian groups in the target of cohomology), and your explanation in 2 is useful to me as well.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeMay 1st 2011
    • (edited May 1st 2011)

    (does this reformulation make it possible without “concrete” assumption ?

    The concreteness is what allows us to interpret the situation in terms of sheaves/stacks with values in sets/categories (or groupoids). If we drop the concreteness assumption, we might still be able to proceed, but would step into the far more general and far less explored territory of (higher) categories of (higher) sheaves with coefficients not in the standard coefficient object. I’d hesitate to go in that direction without a strong motivating example that makes it necessary.

    Is there any chance to see an electronic version of an English (or French or German) translation of Fuks’ article?

    Or else, can you recount further what he discusses in his article? What’s his main theorem with his definition?

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)