Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMay 6th 2011

    added some content to variational bicomplex

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeMay 6th 2011

    added the definition (elegant version); expanded the list of commented references

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeMay 6th 2015
    • (edited May 6th 2015)

    I have been touching variational bicomplex and jet bundle, adding some more references and some further but scattered statements. Needs more work.

    • CommentRowNumber4.
    • CommentAuthorzskoda
    • CommentTimeMay 6th 2015
    • (edited May 6th 2015)

    What is your “jet algebra functor” in down to Earth terms ? Do you have only \infty-jets in that language of adjoints or you have a variant of that abstract formulation for every level ? The questions of locality raise once you allow infinity jets for laws of motion. Is there a legitimate Euler-Lagrange formulation then ?

    • CommentRowNumber5.
    • CommentAuthorThomas Holder
    • CommentTimeMay 6th 2015
    • (edited May 7th 2015)

    Just in passing: there are lecture notes ’Homological methods in mathematical physics’ from the Russian school available here.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeMay 6th 2015
    • (edited May 6th 2015)

    Zoran, as it says at the beginning of the paragraph here, this is the construction of Beilinson-Drinfeld, just written in ideosyncratic notation

    In the context of D-schemes this is (BeilinsonDrinfeld, 2.3.2). The abstract formulation as used here appears in (Lurie, prop. 0.9). See also (Paugam, section 2.3) for a review. There this is expressed dually in terms of algebras in D-modules. We indicate how the translation works

    • CommentRowNumber7.
    • CommentAuthorzskoda
    • CommentTimeMay 6th 2015
    • (edited May 6th 2015)

    This does not seem to answer my questions. What about finite level, kk-jets ? Is there a legitimate Euler-Lagrange formulation for infinite jets ?

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeMay 6th 2015

    This does not seem to answer my questions. W

    Sorry, then I didn’t understand what you were asking. And maybe I still don’t. You write:

    Is there a legitimate Euler-Lagrange formulation for infinite jets?

    Not sure what you mean. Standard modern Euler-Lagrange variational theory works on the infinite jet bundle which, being a projective limit, is such that any function on it depends only on jets of finite order. See for instance here.

    • CommentRowNumber9.
    • CommentAuthorzskoda
    • CommentTimeMay 7th 2015
    • (edited May 7th 2015)

    Right, this answers the second question!

    What about the first question – what about the finite kk-jets? (Can one get fixed finite level jet algebra functor as adjoint functor in the generality you had the infinite one ?)

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeMay 7th 2015
    • (edited May 7th 2015)

    Ah, now I see what you mean. Sorry for being slow.

    I’d need to think about this, but what comes to mind is that the de Rham stack operation aka infinitesimal shape modality really comes as a filtration

    X (3)X (2)X (1)XXʃX X \to \cdots \to \Im_{(3)}X \to \Im_{(2)}X \to \Im_{(1)}X \to \Im X \to ʃ X

    where (k)\Im_{(k)} quotients out only higher order infinitesimals, retaining infinitesimals of order k \leq k.

    Presumeably the rank-kk jet bundle operation is the direct image of base change along X (k)XX \to \Im_{(k)}X in direct analogy to how the full jet bundle operation is the direct image base change along XXX \to \Im X. But I haven’t really thought this through. Good point.

    • CommentRowNumber11.
    • CommentAuthorzskoda
    • CommentTimeMay 7th 2015
    • (edited May 7th 2015)

    Thanks (the filtration is on the modality level, wow), we can talk about it soon.

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeMay 7th 2015

    Yes, this simply comes from the filtration of morphisms of sites where you embed formal duals of rings with elements that are nilpotent of degree kk into formal duals of rings with elements that are nilpotent of degree (k+1)(k+1). All these inclusions are coreflective and left Kan extension turns this into adjoint quadruples between the toposes over these sites. The middle ones of the induced adjoint triples of modalities are those (k)\Im_{(k)}.

    • CommentRowNumber13.
    • CommentAuthorzskoda
    • CommentTimeMay 7th 2015
    • (edited May 7th 2015)

    I know how the filtration goes in the classical ring/scheme case (as well as for formal functions on analytic submanifold case; still, thanks for the details on middle adjunction); but I thought you were saying that there was an abstract nonsense derivation of filtration directly for any abstract infinitesimal shape modality from first principles.

    (As analogy, at the level of Abelian categories (of qcoh sheaves on nc spaces) there are some properties of subcategories and adjunctions characterizing infinitesimal neighborhoods at finite and infinite level in Rosenberg’s work; some of the things worked for the jets there, though there is lack of certain representability properties).

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeMay 7th 2015

    I thought you were saying that there was an abstract nonsense derivation of filtration directly for any abstract infinitesimal shape modality from first principles.

    Ah, no, this I wasn’t saying, and this isn’t true.

    • CommentRowNumber15.
    • CommentAuthorzskoda
    • CommentTimeMay 7th 2015
    • (edited May 7th 2015)

    Ok, still interesting enough for thoughts :)

    If I understood you correctly then, the kk-jet and \infty-jet algebra functors with all the adjointness properties are then on the same footing from the abstract points of view (and then in the classical de Rham case there is an additional embedding of one into another).

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeMay 7th 2015

    Yes.

    By the way, now that I thought of it: the kk-jet bundle functor is base change reflection along p:X (k)Xp \colon \Im X_{(k)}\to \Im X.

    The way this works is as follows: Given a bundle EXE \to X regarded as an object in H /XH / (k)X\mathbf{H}_{/X} \to \mathbf{H}_{/\Im_{(k)}X} then to see what its image is under p *p *p^\ast p_\ast for

    H / (k)(X)p *p *p !H /(X) \mathbf{H}_{/\Im_{(k)}(X)} \stackrel{\overset{p_!}{\longrightarrow}}{\stackrel{\overset{p^\ast}{\longleftarrow}}{\underset{p_\ast}{\longrightarrow}}} \mathbf{H}_{/\Im(X)}

    we test what its local sections are by mapping into it from UXU \hookrightarrow X regarded as an object in H /XH (k)X\mathbf{H}_{/X}\to \mathbf{H}_{\Im_{(k)}X}.

    Then by adjunction such maps Up *p *EU \to p^\ast p_\ast E over (k)X\Im_{(k)}X are maps from p *p !UEp^\ast p_!U \to E over (k)X\Im_{(k)}X. But on the left this is the order-kk infinitesimal disk bundle T (k)UT_{(k)}U, by the discussion at differential cohesion here.

    But sections of EE from order kk-infinitesimal disks aroun points of UU are precisely order-kk jets of EE.

    • CommentRowNumber17.
    • CommentAuthorzskoda
    • CommentTimeMay 7th 2015

    Thanks, looks right to me.

    • CommentRowNumber18.
    • CommentAuthorUrs
    • CommentTimeMay 7th 2015

    I have expanded a little on this in section 5.3.10 of dcct (pdf).

    • CommentRowNumber19.
    • CommentAuthorzskoda
    • CommentTimeMay 7th 2015

    Thanks for the tip.

    Some references seem missing in 5.5.7 (question marks).

    • CommentRowNumber20.
    • CommentAuthorUrs
    • CommentTimeMay 7th 2015

    Thanks. That’s a pointer to a section which exists, but not yet in the big file. I think for the moment I’ll just suppress the pointer to it. Thanks for the mentioning it.

    • CommentRowNumber21.
    • CommentAuthorigor
    • CommentTimeMay 8th 2015

    I fixed an inaccurate statement about the symplectic form being degenerate on symmetries (that only holds for gauge symmetries, which had not been defined at that point). I also a more precise notion of a symmetry as an evolutionary vector field on the jet bundle (rather than just a vertical one).

    • CommentRowNumber22.
    • CommentAuthorUrs
    • CommentTimeMay 8th 2015

    Thanks, Igor. My fault, I suppose.

    • CommentRowNumber23.
    • CommentAuthormhohmann
    • CommentTimeMay 10th 2015

    I also a more precise notion of a symmetry as an evolutionary vector field on the jet bundle (rather than just a vertical one).

    I’m a bit confused about this point - maybe it’s just a question of terminology. If vv is an evolutionary vector field, i.e., a vertical generalized vector field on EE, shouldn’t it then be prv(L)=0modimd\operatorname{pr}v(L) = 0 \mod im d, i.e., the prolongation of vv be used here? Or does your definition of an evolutionary vector field above describe what is in other places called “prolongation of an evolutionary vector field”? (Probably it does, since you define it as a vector field on jet space.)

    • CommentRowNumber24.
    • CommentAuthorigor
    • CommentTimeMay 12th 2015

    Essentially yes. Since the vector field is already defined on J EJ^\infty E, there is no need to prolong it. By a standard theorem, any such vector field is the prolongation of a “generalized vector field” on EE, sometimes known as the “generator” (also “characteristic”) of the evolutionary vector field. But that way one first has to define what a “generalized vector field” is.

    • CommentRowNumber25.
    • CommentAuthormhohmann
    • CommentTimeMay 12th 2015

    Thanks for the clarification, that’s what I thought. In my lecture notes I also tried to avoid introducing “generalized vector fields”, so I ended up defining an evolutionary vector field as a map X:J EVEX: J^{\infty}E \to VE, where ν:VEE\nu: VE \to E is the vertical tangent bundle of EE, such that νX=π ,0\nu \circ X = \pi_{\infty,0}. This was a rather quick thought, but it should work like this.

    Following your construction and defining an evolutionary vector field YY as a particular vertical vector field on J EJ^{\infty}E, my definition should simply be the characteristic and be given by Xf=Y(fπ ,0)Xf = Y(f \circ \pi_{\infty,0}) for all fC (E)f \in C^{\infty}(E).

    • CommentRowNumber26.
    • CommentAuthorUrs
    • CommentTimeMay 12th 2015
    • CommentRowNumber27.
    • CommentAuthorUrs
    • CommentTimeAug 26th 2015

    have created entries for Euler-Lagrange form, source form, Lepage form, and a stub for variational sequence.

    • CommentRowNumber28.
    • CommentAuthorDavid_Corfield
    • CommentTimeOct 11th 2015

    Added reference to the longer version of a paper

    Irina Kogan, Peter Olver, Invariant Euler-Lagrange Equations and the Invariant Variational Bicomplex, pdf

    “This result will be based on combining two powerful ideas in the modern, geometric approach to differential equations and the variational calculus. The first is the variational bicomplex…The second ingredient in our method is Cartan’s moving frame theory”

    It gives a list of “interesting further research directions” on p. 49.

    • CommentRowNumber29.
    • CommentAuthorUrs
    • CommentTimeOct 11th 2015

    Thanks! This one I had not seen yet.

    • CommentRowNumber30.
    • CommentAuthorUrs
    • CommentTimeMar 21st 2023

    added DOI-link for:

    diff, v52, current