Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorzskoda
    • CommentTimeMay 8th 2011

    Affinity in the context of D-modules, as defined by Alexander Beilinson is the subject of a new stub D-affinity. There is a categorical generalization in the MPI1996-53 preprint (pdf) of Lunts and Rosenberg in terms of differential monads. Many generalizations of Beilinson-Bernstein localization theorem have their intuitive explanation in a two-step reasoning. First the noncommutative algebra in question is understood as a noncommutative (or maybe categorical) resolution of singularities of a commutative object. Then the latter satisfies D-affinity and one can localize.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)