Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homology homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monads monoidal monoidal-category-theory morphism motives motivic-cohomology newpage nforum nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTim_Porter
    • CommentTimeAug 23rd 2011

    I have deleted an old out of date query box from homotopy theory.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeAug 22nd 2013

    have added a pointer to the new Problems in homotopy theory Wiki

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeSep 24th 2013

    I have expanded the beginning of the list of References at homotopy theory, with brief comments (Quillen had been missing, Lurie had been missing, UF had been missing).

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeApr 12th 2017
    • (edited Apr 12th 2017)

    The Idea-section at homotopy theory had been abysmal.

    I have written something more substantial now, see here.

    This is just so that I may point from other introductory pages like Introduction to Topology to “homotopy theory” without feeling that I am sending the reader down the cliff. But I don’t actually have time to deal with bringing the entry on homotopy theory into shape right now. Everybody please feel invited to expand on that entry further.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeApr 13th 2018
    • (edited Apr 13th 2018)

    below the reference to Tyler Lawson’s “Homotopy theory: The future” I added pointer to Clark Barwick’s “The future of homotopy theory” (now Barwick 17).

    It seems to fit there, even though it is less about the subject of homotopy theory than about the sociology of its practitioners.

    diff, v62, current

    • CommentRowNumber6.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 13th 2018

    It would be helpful if Barwick could give some existing exemplary writings of the kind he’s looking to encourage.

    Presumably Lawson’s talk would count. Strictly, I guess it should be named ’Chromatic homotopy theory: The future’, since it came at the end of the 2013 Talbot workshop of that name.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeApr 13th 2018
    • (edited Apr 13th 2018)

    It’s time to finally nail down the fundamental relationship between homotopy theory and string/M theory from first principles, not relying on oracles.

    With Hisham and John H., we have finally sorted out how ADE-equivariant homotopy theory classifies intersecting black brane configurations. (It’s closely related to, but not exactly how I had imagined it in Jan 2016, instead it’s in un-stable equivariant (rational) cohomotopy, after all…).

    First we were perplexed that the G ADEG_{ADE}-equivariant enhancement of the M2/M5-cocycle, while correctly detecting the “black” M2 and M5, misses the KK6 (the “M6”) as well as the M9. But reflection reveals that the nascent equivariant homotopy theory of black branes is already smarter than we are: The isolated KK6 (in its guise as the D6) suffers from the RR-field tadpole anomaly and it is only its “M5 half-brane“-intersection with the M9 (it its guise as the O8-plane) that should appear, which turns out to be exactly the thing that the G ADEG_{ADE}-equivariant cohomology theory reports as being a non-trivial cocycle.

    • CommentRowNumber8.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 13th 2018

    How does one know about ADE gauge enhancement from “first principles”? I see from your slide 54 that one construction “happens to be the same as” a black M5-brane at an A-type singularity, but that doesn’t sound like a first principles derivation.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeApr 13th 2018
    • (edited Apr 13th 2018)

    You are referring to slide 54 here.

    So there is one choice of S 1S^1-action on the 4-sphere such that gauge enhancement exists in the sense of a lift as on slide 61, after fiberwise Goodwillie linearization. This is from “first principles” in that it is just a mathematical analysis of the structure inside the equivariant Whitehead tower that grows out of the super-point.

    That S 1S^1-action is, it turns out (hence “happens to be”) the A-type action on the 4-sphere, namely the one induced by regarding S 1=U(1)SU(2)=S()S^1 = U(1) \subset SU(2) = S(\mathbb{H}) and identifying S 4=S()S^4 =S(\mathbb{R} \oplus \mathbb{H}).

    Moreover, analysis shows that what makes the gauge enhancement work is the fact that the fixed point set of this action is S 0S 4S^0 \hookrightarrow S^4. But this is the case for every non-trivial subgroup of SU(2)SU(2). Restricting to finite subgroups, this yields the ADE-orbifolds of the 4-sphere.

    • CommentRowNumber10.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 13th 2018

    The power of \emptyset!

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeApr 13th 2018

    I suppose now you are referring to slide 83.

    • CommentRowNumber12.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 18th 2018

    Any further thoughts on expressing such work (#7) in terms of “Cartan geometry with singularities” from here?

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeApr 18th 2018

    I haven’t further developed “Cartan geometry with singularities” yet, but our understanding of these local models (super-Minkowski spacetimes with super-ADE-singularities) has much progressed. We should have a first version of the article to share next week.

    It turns out that the classification of these local models matches the classification of BPS-solutions to 11d supergravity, including a fair bit of fine print. This means that when working in supergeometry, the “quantum numbers” of black brane solutions to supergravity (dimension, BPS degree, singularity structure) is already fixed by a super tangent space wise analysis, hence on the local model spaces.

    This reinforces the idea that black pp-brane physics is a topic in super Cartan geometry with singularities. On a rough level it is clear how this works, but I haven’t tried to write it out as a formal theory yet.

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeFeb 14th 2019
    • (edited Feb 14th 2019)

    When writing cross-discipline, one notices how few background texts there are that communicate cross-discipline. In finalizing our Equivariant homotopy and super M-branes for publication, I need for the very first paragraphs one-punch-knockout citations: “string/M-theory is [cite and done], homotopy theory is [cite and done]” to quickly orient the reader who may still hop off and not make it to the more detailed reviews provided down the line in the text. For the string/M-theory bit I am fairly happy with pointing to Duff 99.

    But for the homotopy theory bit?

    Most “introductions” to homotopy theory/\infty-category theory jump deep into technical details of simplicial sets and the like right away. That’s not what the expected mathematically inclined string theorist wants or even needs to see, who hasn’t even been told yet what “homotopy theory” as such actually is.

    I tended to like to cite Mike’s “The Logic of Space” for the purpose of broader introduction to what it’s all about. But while very nice in itself, it seems too much focused on type theory for my intended audience.

    What to do? Any text out there that gives a modern idea of “homotopy theory” to the educated layman who is mathematically inclined but really can’t be expected to enjoy hearing things like “the cofibrations are simply the presheaf monomorphisms” before he has even been told what homotopy theory as such actually is?

    • CommentRowNumber15.
    • CommentAuthorTim_Porter
    • CommentTimeFeb 14th 2019
    • (edited Feb 14th 2019)

    The problem may be what prerequisites should be assumed. I looked back at a paper I wrote on Abstract Homotopy Theory for the Chilean journal Cubo, but it assumed a basic knowledge of algebraic topology. My book with Kamps also has something like the same set of prerequisites. Ronnie’s book Topology and Groupoids starts from much further back but then gets nowhere near the more infinity categorical stuff, and so on. If one assumes too much, the basic idea risks being submerged and if not enough, then the development will take too long. I am mentioning these books and papers since I know them well, not to encourage sales!

    I tried to do something with the Menagerie Notes but those take quite some time to get where you would want them to be and also ignore stable homotopy theory as I am not a great fan of that area!

    I can offer the tex files for the Menagerie as a base from which to build using ’copy-paste-edit’ if that would help, also perhaps the n-Lab could use what you, Urs, have already put online together with other material to produce a pdf file or a Kerodon type intro that would do what you need.

    • CommentRowNumber16.
    • CommentAuthorDavid_Corfield
    • CommentTimeFeb 14th 2019

    Any text out there that gives a modern idea of “homotopy theory” to the educated layman…

    Sounds like one of the things Clark Barwise was calling for in The future of homotopy theory (pdf) [hmm, seems to have just disappeared from his site].

    I wonder if the Handbook of Homotopy Theory will provide such a thing. The old Handbook of Algebraic Topology is perhaps seeing it too much as part of alg top, as the title suggests.

    • CommentRowNumber17.
    • CommentAuthorUrs
    • CommentTimeNov 5th 2019

    added this pointer:

    • Birgit Richter, From categories to homotopy theory Cambridge studies in advanced mathematics, 2019 (webpage)

    diff, v68, current

    • CommentRowNumber18.
    • CommentAuthorUrs
    • CommentTimeJul 9th 2020

    added publication data for these items:

    diff, v70, current

    • CommentRowNumber19.
    • CommentAuthorUrs
    • CommentTimeAug 13th 2020

    added pointer to today’s

    diff, v72, current

    • CommentRowNumber20.
    • CommentAuthorUrs
    • CommentTimeDec 10th 2020

    added pointer to:

    diff, v74, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)