Want to take part in these discussions? Sign in if you have an account, or apply for one below
Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.
mentioned the -refinement at de Rham theorem
added pointer to
also, the entry points to Bott&Tu. But do they actually state the de Rham theorem?
Hi Urs,
The de Rham theorem is Theorem 8.9 and Proposition 10.6 in Bott and Tu.
added these references on the de Rham theorem on diffeological spaces:
Patrick Iglesias-Zemmour, Une cohomologie de Čech pour les espaces differentiables et sa relation a la cohomologie de De Rham (1988) [pdf]
Patrick Iglesias-Zemmour, Čech–De Rham bicomplex in diffeology, Israel Journal of Mathematics (2023) 1–38 [doi:10.1007/s11856-023-2486-8]
Emilio Minichiello, The Diffeological Čech-de Rham Obstruction [arXiv:2401.09400]
1 to 6 of 6