Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories accessible adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex-geometry computable-mathematics computer-science constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-geometry differential-topology digraphs duality education elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity group-theory higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration-theory k-theory lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monad monoidal monoidal-category-theory morphism motives motivic-cohomology newpage nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topological topology topos topos-theory tqft type type-theory universal

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMar 5th 2012
    • (edited Mar 5th 2012)

    The following old material was sitting at triangulated category and was labeled “discussion”. I am hereby moving it from there to here. Probably some of it deserves to be merged into the entry in some form, but under a headline “history”.

    [begin forwarded discussion]

    The original definition of triangulated categories is apparently due to Verdier, who developed the theory upon guidelines by Grothendieck; Dold and Puppe developed independently a version without octahedron axiom with motivation in algebraic topology. In the manuscript Pursuing Stacks, Grothendieck mentions that the usual definition of triangulated categories and the corresponding derived categories seemed to be inadequate for some of the developments that he wished for. He also says something to the effect that he had tried to interest various of his ex-students in doing a thorough treatment of the ideas, which he considered to be necessary for future development, and which he then proceeds to sketch out.

    +–{+ .query} Zoran Skoda: I am not quite sure if this is entirely correct. Grothendieck indeed wanted more flexibility in homotopical algebra and went to develop these things; but if one talks only very specifically about the concept of triangulated category itself (not wider context) than the main complaint of everybody was about the crudeness of localization at quasiisomorphisms; the thing which for example Drinfel’d’s “quotients of dg-categories” paper successfully rectifies (and then again Lyubashenko in quotients of A A_\infty-categories). =–

    That led to the theory of derivators, where the idea is that in addition to looking at a basic category of ’things’ such as chain complexes, you should also look at all categories of diagrams of such things, and the derived / homotopy Kan extensions between the corresponding derived categories that correspond to a change of the indexing category. The basic idea behind this was also explored slightly later by Alex Heller (1988). See the references on the pages derivator, pointed derivator, and stable derivator.

    [end forwarded discussion]

    • CommentRowNumber2.
    • CommentAuthorzskoda
    • CommentTimeMar 5th 2012
    • (edited Mar 5th 2012)

    Urs, we had earlier convention to leave a link to the archived discussion at the previous place in the entry. This way it would not be lost in the forum.

    • CommentRowNumber3.
    • CommentAuthorTodd_Trimble
    • CommentTimeMar 5th 2012

    I put in a link.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeMar 5th 2012


    isn’t it easy for you to modify the text such as to address your query-box remark, and then insert is properly back into the entry? It does not seem to be a controversial point to me.

    • CommentRowNumber5.
    • CommentAuthorzskoda
    • CommentTimeMar 5th 2012
    • (edited Mar 5th 2012)

    I do not open all threads on nForum. If you are doing removal without a link, some will slip even when I can manage, because I do not notice the thread. I certainly did few times such corrections quietly in fact. But the person who is already reorganizing the page and knows where the things stood up will also do better organizing where to add links. So it is better that I leave a remark to you.

    These days I can hardly open 20% of threads in nForum, and will diminish in days to come.

    • CommentRowNumber6.
    • CommentAuthoradeelkh
    • CommentTimeAug 23rd 2014

    I edited the idea section a bit. It now reads:

    Any (infinity,1)-category CC can be flattened, by ignoring higher morphisms, into a 1-category ho(C)ho(C) called its homotopy category. The notion of a triangulated structure is designed to capture the additional structure canonically existing on ho(C)ho(C) when CC has the property of being stable. This structure can be described roughly as the data of an invertible suspension functor, together with a collection of sequences called distinguished triangles, which behave like shadows of homotopy (co)fibre sequences in stable (infinity,1)-categories, subject to various axioms.

    A central class of examples of triangulated categories are the derived categories D(𝒜)D(\mathcal{A}) of abelian categories 𝒜\mathcal{A}. These are the homotopy categories of the stable (∞,1)-categories of chain complexes in 𝒜\mathcal{A}. However the notion also encompasses important examples coming from nonabelian contexts, like the stable homotopy category, which is the homotopy category of the stable (infinity,1)-category of spectra. Generally, it seems that all triangulated categories appearing in nature arise as homotopy categories of stable (infinity,1)-categories (though examples of “exotic” triangulated categories probably exist).

    By construction, passing from a stable (infinity,1)-category to its homotopy category represents a serious loss of information. In practice, endowing the homotopy category with a triangulated structure is often sufficient for many purposes. However, as soon as one needs to remember the homotopy colimits and homotopy limits that existed in the stable (infinity,1)-category, a triangulated structure is not enough. For example, even the mapping cone in a triangulated category is not functorial. Hence it is often necessary to work with some enhanced notion of triangulated category, like stable derivators, pretriangulated dg-categories, stable model categories or stable (infinity,1)-categories. See enhanced triangulated category for more details.

    Also I added a small history section:

    The notion of triangulated category was developed by Jean-Louis Verdier in his 1963 thesis under Alexandre Grothendieck. His motivation was to axiomatize the structure existing on the derived category of an abelian category. Axioms similar to Verdier’s were given by Albrecht Dold and Dieter Puppe in a 1961 paper. A notable difference is that Dold-Puppe did not impose the octahedral axiom (TR4).

    Please feel free to correct and improve.

    • CommentRowNumber7.
    • CommentAuthoradeelkh
    • CommentTimeAug 25th 2014
    • (edited Aug 25th 2014)
    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeApr 27th 2016

    I have added statement and proof of the long exact sequences induced by a distinguished triangle, here.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeJun 7th 2016
    • (edited Jun 7th 2016)

    I discovered a nice note by Andrew Hubery (here) in which a whole bunch of different formulations of the octahedral axiom are proven to be equivalent. One of them (“axiom B” in the note) manifestly axiomatizes just the existence of homotopy pushouts. That is really what one uses, explicitly or implicitly, when proving the octahedron from a stable model category: homotopy pushouts and their pasting law.

    I have added pointer to Hubery’s note to the entry (here).

    • CommentRowNumber10.
    • CommentAuthorzskoda
    • CommentTimeJun 8th 2016

    Octahedral axiom has higher hypersimplicial analogues; if they are satisfied some say that one has a strongly triangulated category, as studied e.g. by Lyubashenko. Now how the homotopy pushout approach could add those (the strongly triangulated are somewhat more natural than triangulated, some think).

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeJun 8th 2016
    • (edited Jun 8th 2016)

    I suppose the higher analogs are equivalent to the existence of homotopy colimits of more general shape than just homotopy pushouts.

    That’s really what a triangulated category structure is: instead of a full stable model structure remembering all homotopy colimits, it axiomatizes only the existence of a few of them (homotopy pushouts, their masting law and the induced homotopy cofiber sequences).

    In the end the real thing is stable model categories and stable \infty-categories.