Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorMirco Richter
    • CommentTimeMar 29th 2012

    Is there a Dold-Kan correspondence between differential graded coalgebras and something?

    in the nLab entry on L L_\infty-algebras there is the bijection between degreewise finite dimensional differential graded algebras (in positive degrees) and their corresponding differential graded coalgebras. For DGA’s there is such a correspondence. …

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeMar 29th 2012

    That correspondence between L L_\infty-algebras and dg-algebras is an instance of Koszul duality of linear operads.

    • CommentRowNumber3.
    • CommentAuthorMirco Richter
    • CommentTimeMar 29th 2012
    • (edited Mar 29th 2012)

    So? What is the relation to my question? (I didn’t ask if there is a DK corresp. between L L_\infty-algebras and DGA’s, obviously!)

    • CommentRowNumber4.
    • CommentAuthorMirco Richter
    • CommentTimeMar 29th 2012

    More like: Simplicial objects in the category of coalgebras are in correspondence with differential graded coalgebras seen by …

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeMar 29th 2012
    • (edited Mar 29th 2012)

    There is some discussion of a co-monoidal Dold-Kan correspondence in this PhD thesis

    • The Dold-Kan Correspondence and Coalgebra Structures (pdf)
    • CommentRowNumber6.
    • CommentAuthorMirco Richter
    • CommentTimeMar 29th 2012

    thanks Urs…