Processing math: 100%
Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nforum nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMar 30th 2012

    I have added at combinatorial spectrum the missing bibliographical information for Kan’s original article.

    While doing so I noticed old forgotten discussion sitting there, which hereby I move from there to here:

    — begin forwarded discussion —

    A previous version of this entry triggered the following discussion:

    +–{: .query} Mike: Are you sure about that last condition? I remember a condition more like “for each xEn there is some finite m<n such that all faces of x in Em are the basepoint.

    Urs: on the bottom of page 437 in the reference by Brown it says: “each simplex of E has only finitely many faces different from *”.

    I see that my original phrasing reflected this only very imprecisely. I have tried to improve that now. But it also seems that this condition m<n which you mention is not implied by Brown(?) In particular, it seems this condition does not harmoize with the fact that n may be negative.

    But this looks like the condition which does appear in the definition of the n-simplex spectra (next page of Brown). I have added that in the list of examples now.

    Another question: what’s the established term for these things here? I made up both “combinatorial spectrum” and “simplicial spectrum” after reading Brown’s article, which just calls this “spectrum” without qualification. I am tending to think that “simplicial spectrum” would be a good term.

    Related to that: what’s a more recent good reference on these combinatorial version of spectra?

    Mike: I was remembering a condition like that from Kan’s original article “Semisimplicial spectra,” which I unfortunately don’t have access to a copy of right now. I think the idea is that a spectrum of this sort is built out of a naive prespectrum of simplicial sets (that is, a sequence of based simplicial sets Xn with maps ΣXnXn+1) by making the k-simplices of Xn into (kn)-simplices in the spectrum. I thought the condition on m<n is sort of saying that each simplex comes from Xn for some n<. But possibly my memory is just wrong.

    Since Kan’s original term was “semisimplicial spectrum” back when “semisimplicial set” meant what we now call a “simplicial set,” it’s hard to argue with “simplicial spectrum.” As far as I know, however, no algebraic topologist has really thought seriously about these things for quite some time, probably due largely to the appearance of symmetric monoidal categories of spectra (EKMM S-modules, orthogonal spectra, symmetric spectra, etc.) of which there is no known analogue for this sort of spectra. It’s kind of a shame, I think, since these spectra give a really good intuition of “an object with k-cells for all k.” I spent a little while once trying to come up with a version of these that would have a symmetric monoidal smash product, maybe starting with simplicial symmetric spectra instead of naive prespectra, but I failed.

    Urs: thanks, very useful. That’s a piece of information that I was looking for.

    Yes, this combinatorial spectrum is nicely suggestive of a -category. It seems surprising that there shouldn’t be a symmetric monoidal product on that. What goes wrong?

    Concerning terminology: now that I thought about it I feel that “simplicial spectrum” may tend to be misleading, as it collides with the use of “simplicial xyz” as a simplicial object internal to the category of xyzs. Surely some people out there will already be looking at functors ΔopSpectra and call them “simplicial spectra” (?)

    Mike: Yes, you’re quite right that “simplicial spectrum” should probably be reserved for a simplicial object in spectra; I wasn’t thinking. What we really need is a name for the shape category that arises here, analogous to “simplex category,” “cube category,” and so on. Like “spectrix category.” Then combinatorial spectra would be “spectricial sets.” (I’m only half joking.)

    The thing that goes wrong with the symmetric monoidal product is, as far as I can tell, sort of the same thing that goes wrong for naive prespectra: there are automorphisms that don’t get taken into account. But it’s possible that no one has just been clever enough.

    =–

    — end forwarded discussion —

    • CommentRowNumber2.
    • CommentAuthorMike Shulman
    • CommentTimeMar 31st 2012

    Thanks. Of course, my memory was playing tricks on me during that discussion; the definition in Kan’s article is also exactly what is on the page.

  1. @Mike’s “spectricial sets”: As far as I understand, combinatorial spectra are not simply diagrams of shape the category of stable simplices, but only certain such diagrams satisfying an additional finiteness condition. So even if we were to refer to the category of stable simplices as the “spectrix category”, the term “spectricial set” would be misleading. Or is there perhaps a better shape category which somehow encodes the finiteness condition??

    • CommentRowNumber4.
    • CommentAuthorMike Shulman
    • CommentTimeJun 2nd 2014

    That’s one of the reasons that my comment was half joking.

    • CommentRowNumber5.
    • CommentAuthorTim Campion
    • CommentTimeDec 20th 2016
    • (edited Dec 20th 2016)

    It seems to me that the category S of combinatorial spectra is the category of Set*-valued presheaves on a small category D. Here, D consists of “shifts of simplices”.

    Let D denote the site for the obvious Set*-valued presheaf category into which S embeds, i.e. there is an object for each integer, and morphisms are generated by the usual simplicial maps and identities. Let me define D as a full subcategory of S, which in turn I view as a full subcategory of [Dop,Set*]. For each n, d{1}, there is an object Δd[n] of D, defined by Δd[n](m)=Δ([m+n],[d])+. Here I’m using brackets in the standard way to denote objects in the (augmented) simplex category, with the convention that Δ([p],[d])= if p<1. So Δd[n] has a top-dimensional nondegenerate, non-basepoint simplex in dimension dn; its nondegenerate, non-basepoint simplices in degree dnk correspond to the codimension-k faces of the standard d-simplex. In degree n, we have d+1 0-dimensional simplices corresponding to the the vertices of the standard d-simplex, and every face map applied to them results in a basepoint. Likewise, the “higher face maps” applied to a face of Δd[n] (the ones not specified in the above formula) are all the basepoint. In [Dop,Set*], the object Δd[n] corepresents a very natural functor: Hom(Δd[n],X)={xX(n)i0ikx=*forij>dj}. Say that an element of such a hom-set (for some d,n) is a simplex of finite dimension. Note that XS iff every simplex of X is of finite dimension.

    I claim that the density comonad for D in [Dop,Set*] is idempotent, with fixed point category S: any colimit of objects of D has simplices all of finite dimension, and conversely the canonical colimit comparison map for an object of S is surjective because every simplex in an object of S has finite dimension, and it is injective because every face map between these simplices is witnessed by a map in D. The coreflection from [Dop,Set*] to S throws away those simplices of infinite dimension. The comparison functor from S to [Dop,Set*] is an equivalence. This can be seen because the objects of D are retracts of representables in [Dop,Set] and the inclusion functor from D to the Cauchy completion of D is fully faithful. So S is equivalent to [Dop,Set*].

    Assuming I haven’t made a mistake and S is really a presheaf category, it becomes tempting to define a symmetric monoidal structure on it via Day convolution…

    • CommentRowNumber6.
    • CommentAuthorTim Campion
    • CommentTimeDec 20th 2016
    • (edited Dec 20th 2016)

    As a first guess, maybe we want to define Δd[n]Δd[n]=(Δd×Δd)[n+n]. Here I’m using the obvious suspension-like functor [n], which shifts the degree of everything down by n, so ought to act like n-fold desuspension. I’m writing Δd for Δd[0]. The product of simplices is meant to suggest the formula (Δd×Δd)(m)=((Δd×Δd)m)+ where on the right hand side I mean the simplicial set Δd×Δd. I think this defines a symmetric monoidal structure on shifts of finite products of simplices, which extends by Day convolution to a symmetric monoidal structure on S=[Dop,Set*]. I think this might be the correct smash product, but that will take some work to check.

    (I’m thinking about Δd[n] as a copy of Sn which has been “fleshed-out” to have dimension d larger. I’m not sure if that’s what a cell in a spectrum is supposed to be like?)

    I think this monoidal product at least doesn’t fall afoul of Lewis’s impossibility theorem. The ΣΩ adjunction comes from the inclusion ΔD, [d]Δd[0]. I think this is a lax/colax monoidal adjunction, but it should escape Lewis’s theorem because ΣS0 is “Δ+” whereas the monoidal unit is just Δ0[0], which is not isomorphic, just weakly equivalent.

    • CommentRowNumber7.
    • CommentAuthorMike Shulman
    • CommentTimeDec 20th 2016

    Very interesting! I don’t have time to think deeply about it right now, but nothing jumps out at me as wrong.

    • CommentRowNumber8.
    • CommentAuthorKarol Szumiło
    • CommentTimeDec 20th 2016

    I admit that I haven’t read your proposed construction in detail. However, I want to mention one potential obstruction for the category of combinatorial spectra to be a category of presheaves. Namely, why is it complete? The most obvious construction of the product of an infinite family (Xi) won’t work if there is no universal bound for the number of non-basepoint faces of a cell (in a given dimension). Perhaps if you could explicitly describe how products in your presheaf category translate back to the standard description of the category of combinatorial spectra, it would help me digest your approach.

    • CommentRowNumber9.
    • CommentAuthorMike Shulman
    • CommentTimeDec 20th 2016

    I think the “obvious construction” would be the product in the presheaf category [Dop,Set*], and Tim’s presheaf category is coreflective therein, so its products are obtained by coreflecting the ambient ones. I think what that amounts to is discarding all the cells with infinitely many nonbasepoint faces.

    • CommentRowNumber10.
    • CommentAuthorTim Campion
    • CommentTimeDec 20th 2016
    • (edited Dec 20th 2016)

    Actually, wondering whether S was complete or cocomplete was my initial question – I thought it seemed likely given that Ken Brown was able to build a model structure on S, and this seemed surprising from the description of S. I mucked around building colimits by hand, realized that S was actually closed under colimits in [Dop,Set*], wondered whether S might be coreflective in [Dop,Set*], recalled that under Vopenka’s principle it must be – and must in fact be locally presentable. From there, the description of the coreflector and the natural choice of generator are not so hard to see, and it’s natural to ask whether one has a presheaf category. But I love how these Vopenka’s principle results can help shape one’s thinking so nicely!

    [As a side note – I don’t know so many coreflective subcategories of presheaf categories. Are they all themselves presheaf categories?]

    Also, I’m now noticing that the proposed smash product violates another one of Lewis’ axioms: ΩΣX is not weakly equivalent to colimnΩnΣnX. Well – I guess this axiom is independent of the choice of smash product. I think this is okay because you only expect this hold after deriving these functors, right? After all, these functors have been used in the literature by Brown.

    • CommentRowNumber11.
    • CommentAuthorMike Shulman
    • CommentTimeDec 20th 2016

    I don’t remember all of Lewis’s axioms, but I think all or most of them are things that must hold at the derived level; the no-go theorem is that you can’t get them all to also hold simultaneously at the point-set level.

    • CommentRowNumber12.
    • CommentAuthorTim Campion
    • CommentTimeDec 22nd 2016
    • (edited Dec 22nd 2016)

    I think I was mistaken, and now I suspect that S is not a presheaf category. It does seem to be locally finitely presentable, though. I think most of what I claimed was basically correct, except for the actual formulas, and moreover except for the assertion that the objects Δd[n] were retracts of representables. The more I think about this, the more I’m confused about the interpretation of an element xX(n) as a sort of simplex of integer dimension.

    The whole idea was to let Δd[n] coreprepresent (in the Set*-enriched sense) the functor Fd,n:X{xX(n)ϕ,ϕ*(x)0Image(ϕ)[d+1,ω)}. Here ϕ ranges over all morphisms into n in D, and I’m using the following description of D: its object are a ’s worth of copies of ω, and a morphism from ωn to ωn is an order-preserving map ωω which is eventually just a shift upward by nn. So the condition Image(ϕ)[d+1,ω) is a way of saying that ϕ factors as a surjection followed by an injection which misses only elements at or below d, i.e. it is a combination of degeneracies and “lower” face maps.

    The functor Fd,n is indeed corepresentable, by an object we can call Δd[n]. We have Δd[n]=D(,n)+/Kd,n, where Kd,nD(,n) consists of all nontrivial higher faces: Kd,n(k)={ϕD(k,n)Image(ϕ)[d+1,ω)}+. But this quotient does not split: all of the nonzero simplices of D(k,n)+ have all their faces nonzero, so in fact there are no nonzero maps Δd[n]D(,n)+.

    I do believe that the objects Δd[n] form a dense generator of S. It’s clear that they form a regular generator of S because every simplex of an object of S must fall in the image of some Δd[n]. I don’t think that density is quite as straightforward as I originally made it out to be, but if xX(n0) appears as the image of some face under a map Δd[n]X, then I think it can be related to the canonical map Δd0[n0]X via a span in DX, passing through Δd[n0] for some larger d.

    But it’s actually easy to see that S is not a presheaf category on D: the objects of D are not tiny, which they would have to be to correspond to representable presheaves. I think that Hom(Δd[n],) preserves Set*-enriched coproducts and filtered colimits, but not pushouts. For an element of X(n) might have a nonzero d+1-face which is quotiented to become zero in the pushout, so that a new map from Δd[n] may appear in the pushout. For example, there is no map Δd[n]Δd+1[n] mapping 1ω to 1ω, but we can quotient the codomain to obtain Δd[n] and then there will be such a morphism into the quotient. Reflecting on this, it seems unlikely to me that that S contains any tiny objects other than the 0 object, so it is probably not a presheaf category at all.

    The category D might still be kind of interesting. It has the following description: Hom(Δd[n],Δd[n])={fΔ([d],[d+nn])Image(f)[d+1,d+nn]} (note the unfortunate notational clash: [d] denotes the totally ordered set {0,,d} whereas [d1,d2] denotes the set {d1,,d2}). The composite gf is defined by extending g in the natural way and then composing as in Δ. To view D as a Set*-enriched category, we add a disjoint basepoint to the homsets. To view the morphisms of D as morphisms ωnωn, and thus as maps between quotients of representables on D, we extend them in the natural way.

    I suppose there still might be some hope of defining a smash product by extending a promonoidal product on D via Day convolution?

    • CommentRowNumber13.
    • CommentAuthorTim Campion
    • CommentTimeDec 27th 2016
    • (edited Dec 28th 2016)

    The notation of my previous comments is “wrong”. The object I was calling “Δd[n]” should be called something more like Δd+[k] where n=dk, since it’s really a k-fold suspension of ΣΔd+.

    The Set*-enriched category D is actually pretty nice (I was mistaken before in thinking that it lay in the image of the “disjoint basepoint” functor from ordinary categories). It consists of a ’s worth of copies of the augmented simplex category (with disjoint baspoints on the homsets), with objects {Δd+[k]}d,k; let’s denote the coface maps as δk,di:Δd1+[k]Δd+[k] and the codegeneracy maps as σk,dj:Δd+1+[k]Δd+[k]. In addition there are maps ιk,d:Δd+1+[(k+1)]Δd+[k], which commute with the face and degeneracy maps in the sense that ιδi=δiι, ισj=σjι – with the interpretation that δk,dd+1=0 and σk,dd+1=0, so that ιk,dδk+1,d+1d+1=0 and ιk,dσk+1,d+1d+1=0.

    So a Set*-valued presheaf on D consists of a ’s worth of pointed, augmented simplicial objects {Xk,d=X(Δd+[k])}k,d, along with maps (ιk,d)*:Xk,dXk+1,d+1 satisfying (δk,d+1d+1)*(ιk,d)*=0 and (σk+1,d+1d+1)*(ιk,d)*=0; these can be interpreted as the structure maps of a spectrum. Such a presheaf lies in the category S if and only if for every k,d the map (ιk,d)* is the kernel of (δk,d+1d+1)*, making S a reflective Set*-enriched subcategory of [Dop,Set*]. There is a ΣΩ adjunction where Ω(X)d=X0,d, and Σ is defined by Kan extension, sending Δd+Δd+[0].

    Unfortunately, the smash product I mentioned above, which is forced if Σ is to be strong monoidal, fails even to be a functor [Dop,Set*]×[Dop,Set*][Dop,Set*] as far as I can see, although it is separately functorial in each variable. So if either S or [Dop,Set*] is to admit a symmetric monoidal smash product, it will have to be fancier.

    • CommentRowNumber14.
    • CommentAuthorMike Shulman
    • CommentTimeJan 5th 2017

    This is interesting, but unfortunately I don’t have time to understand it all right now. But if you manage to make it work out, I’ll be interested to hear!