Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundle bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homology homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory itex k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeApr 27th 2012
    • (edited Apr 27th 2012)

    Here is an old discssion box from finite object which hereby I am moving from there to here.


    Toby: I think that I'll move the internal stuff to finite object, to keep each page relatively short.

    By the way, do I understand you correctly that ’finite object’ in topos theory by default means ’decidable K-finite object’?

    Mike: Okay (to the move). To the question, I’m realizing more and more that I don’t really have the background to be able to say what “topos theorists” say. My only source for this material is the Elephant (and what I’ve been able to deduce on my own, which of course tells us nothing about terminology). The Elephant never says “finite object” unqualified; only “finite cardinal” or “K-finite object” or “decidable K-finite object” or “K˜\tilde{K}-finite object.” If “projective” means “externally projective,” and likewise for “choice” and (maybe) “inhabited,” then “finite object” should mean “finite cardinal,” but I wouldn’t use it that way myself out of fear of ambiguity and since “finite cardinal” means the same thing. I don’t see any objection to “internally finite object” meaning “decidable K-finite object,” though.


    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeApr 27th 2012
    • (edited Apr 27th 2012)

    I am working on finite object.

    I have taken the previous material and split it off into a separate Definitions-section and a section Properties – Subobjects of finite objects. Then I started more Properties-subsections, such as Closure properties and Relation to compact objects. I also tried to edit the Definition-section for quick readability, but I am not happy with it yet.

    Toby, when you see this here, please check the entry and see if you can live with what I did.

    • CommentRowNumber3.
    • CommentAuthorMike Shulman
    • CommentTimeApr 27th 2012

    I moved the comment “internally finite = decidable K-finite” up to the Definitions - Internal version section.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeFeb 10th 2014
    • (edited Feb 10th 2014)

    At finite object there was (and is) a warning:

    Also beware that in category theory the term ’finite object’ is also used in a much more general sense to mean a compact object.

    But that’s not the whole story, yet. I have added the sentence:

    Similar finitenss meaning may also be attributed to dualizable objects in monoidal categories and to perfect complexes (of abelian sheaves) in geometry.

    Since this is kind of important for a global appreciation of the situation, I gave this a table-entry, for inclusion as “Related concepts” in the relevant entries:

    • CommentRowNumber5.
    • CommentAuthorTodd_Trimble
    • CommentTimeFeb 10th 2014

    This reminds me to ask: is the monoidal category of nuclear TVS (under the projective tensor product, or maybe the completed projective tensor product) compact closed?

    I have a dim memory of investigating this once and deciding the answer was “yes”, but if there are experts reading (such as Andrew Stacey or Yemon Choi), maybe they could confirm or deny.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)