Want to take part in these discussions? Sign in if you have an account, or apply for one below
Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.
I have created stratified space in order to collect some references
I see that links to the fundamental category with duals of a stratified space. That old Cafe discussion led to a paper by Woolf, as John mentioned here. It’s Transversal homotopy theory.
Did anything come of that?
I added excellent notes
As a graduate student in Wisconsin, I was among the guinea pigs who listened an excellent and clear exposition by the author of parts of the notes (directed toward the intersection cohomology) , before they were finalized.
@David - I’m not sure, but Lurie has some material in appendix A to Higher Algebra on what he calls the exit-path -category. I think this is a generalisation of the 2-category described by Treumann in arXiv:0708.0659 and the results therein. Essentially representations of the exit path -category in are the same as constructible -sheaves, generalising the case of representations of the fundamental -groupoid being the same as locally constant -sheaves. This is of course a massive generalisation of the old result that representations of the fundamental groupoid in give covering spaces.
I should say that ’constructible’ just means ’locally constant on each stratum’. The 1-stack of perverse sheaves (a subcategory of the derived category of coherent sheaves) is an example of a constructible 1-stack.
There is a van Kampen theorem for the exit-path -category, which I like to think of as the ultimate version of Ronnie Brown’s work on van Kampen-type results on filtered spaces (which give rise to a natural stratification).
So the Baez-Dolan approach is different. Paths cross strata, not just exit them. Woolf had already done something along the lines of Treumann.
1 to 5 of 5