Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorMike Shulman
    • CommentTimeAug 20th 2012
    • (edited Aug 20th 2012)

    Thanks to Karol Szumiło’s answer to my MO question, I have added to Brown representability theorem a mention of the counterexamples for nonconnected pointed spaces and for unpointed spaces (plus a mention of Brown’s abstract categorical version).

    Next task: fix the utterly horrific wikipedia page. (Edit: done!)

    • CommentRowNumber2.
    • CommentAuthorTodd_Trimble
    • CommentTimeAug 21st 2012

    Yay to you and Karol!

    Since my eyes fell on the name Vietoris while looking at the article, I’ll mention a fun fact I just learned today: Vietoris lived until the age of 110 years, 309 days! And his wife lived until the age of 100. Their combined ages is the greatest of any married couple on record.

    • CommentRowNumber3.
    • CommentAuthorTim_Porter
    • CommentTimeAug 21st 2012

    I had heard that she died at the age of 108, but cannot verify my sources.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeFeb 3rd 2016
    • (edited Feb 3rd 2016)

    I have added various further references, with more pointers to relevant chapters, to Brown representability, hence also to generalized (Eilenberg-Steenrod) cohomology.

    As for modern exposition, I like the account in section 12 of

    • Marcelo Aguilar, Samuel Gitler, Carlos Prieto, Algebraic topology from a homotopical viewpoint, Springer (2002) (toc pdf)
    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeMar 11th 2016
    • (edited Mar 11th 2016)

    I have finally added the statement of the full (,1)(\infty,1)-category theoretic version of Brown representability at Brown representabilityhere – and at homotopy category of an (infinity,1)-categoryhere.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeMar 11th 2016
    • (edited Mar 11th 2016)

    I have further expanded at Brown representability theorem and have re-organized a little. In the process I created some auxiliary entries for ease of cross linking:

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeMar 11th 2016
    • (edited Mar 11th 2016)

    For completeness, I have typed out the proof, closely following Lurie’s proof in “Higher Algebra”. Towards the end there is room for streamlining a bit more, but I need to call it quits now.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeMar 12th 2016
    • (edited Mar 12th 2016)

    I have spelled out in more detail the proof of the statement (now this proposition in the entry, which is the Lemma ()(\star) on p. 114 of Higher Algebra) that in an \infty-category generated from cogroup objects {S i}\{S_i\} a morphism ff is an equivalence precisely if each Ho(𝒞)(S i,f)Ho(\mathcal{C})(S_i,f) is an isomorphism.

    This is the key fact needed in the proof of the Brown representability theorem to show that the object constructed there really does represent the given Brown functor. It is also the source of the crucial connectedness condition on the base spaces in the classical version of the theorem (since S 0S^0 is not a cogroup and {S n} n1\{S^n\}_{n \geq 1} generates not all pointed spaces, but just connected pointed spaces.)

    But I am usure about one thing: I presently understand the proof if we assume from the outset that the set {S i}\{S_i\} is closed under forming suspensions, i.e. if a set {S i}\{S_i\} of cogroup objects generates 𝒞\mathcal{C}, then I understand that a morphism is an equivalence if Ho(𝒞)(Σ nS i,f)Ho(\mathcal{C})(\Sigma^n S_i,f) is an iso for all iIi\in I and for for all nn \in \mathbb{N}.

    Of course in the classical case this is satisfied, so there is no issue there. But in the general statement as in Higher Algebra, don’t we need to say it this way?

    On p. 114 there it does say inside the proof that “Enlarging the collection {S i}\{S_i\} if necessary, we may assume that this collection is stable under the formation of suspensions.”. What I am wondering about is whether we need not say this already in the statement of the lemma itself. Probably I am missing something simple.

    • CommentRowNumber9.
    • CommentAuthorMike Shulman
    • CommentTimeMar 12th 2016

    The way I read it, since the statement (\star) is not stated as a separate lemma but rather as a “claim” within the proof of Theorem 1.4.1.2, it inherits all the assumptions that have been made within that proof so far, including the fact that the collection {S i}\{S_i\} is stable under forming suspensions.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeMar 14th 2016

    Okay, thanks.

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeApr 19th 2016
    • (edited Apr 19th 2016)

    I have made some steps in the writeup of the proof more explicit, for expository clarity.

    For instance I have added diagrams that demonstrate the claimed existence of the iterative extensions using that FF takes homotopy pushouts to “weak pullbacks”:

    (iIγK iS i) (γ) iIγK i X n η n F (po h) η n+1 * X n+1 F(X n+1) * η n+1 epi * η n ker((γ *) iIγK i) * η n (pb) F(X n) (γ *) iIγK i iIγK iF(S i) \array{ \left( \underset{{i \in I}\atop {\gamma \in K_i}}{\sqcup} S_i \right) &\overset{(\gamma)_{{i \in I}\atop \gamma \in K_i}}{\longrightarrow}& X_n &\overset{\eta_n}{\longrightarrow}& F \\ \downarrow &(po^{h})& \downarrow & \nearrow_{\mathrlap{\exists \eta_{n+1}}} \\ \ast &\longrightarrow& X_{n+1} } \;\;\;\;\;\;\;\;\;\;\; \Leftrightarrow \;\;\;\;\;\;\;\;\;\;\; \array{ && F(X_{n+1}) &\longrightarrow& \ast \\ &{}^{\mathllap{\exists \eta_{n+1}}}\nearrow& \downarrow^{\mathrlap{epi}} && \downarrow \\ \ast &\overset{\eta_n}{\longrightarrow}& ker\left((\gamma^\ast\right)_{{i \in I} \atop {\gamma \in K_i}}) &\longrightarrow& \ast \\ &{}_{\mathllap{\eta_n}}\searrow& \downarrow &(pb)& \downarrow \\ && F(X_n) &\underset{(\gamma^\ast)_{{i \in I} \atop {\gamma \in K_i}} }{\longrightarrow}& \underset{{i \in I}\atop {\gamma\in K_i}}{\prod}F(S_i) }

    and then similarly for the total limiting extension:

    nX n nX 2n+1 X nX 2n (η 2n+1) n η (η 2n) n F F(X) η epi *(η n) n lim nF(X n) nF(X 2n+1) n(X 2n) nF(X n). \array{ && \underset{n}{\sqcup} X_n \\ & \swarrow && \searrow \\ \underset{n}{\sqcup} X_{2n+1} &\longrightarrow& X' &\longleftarrow& \underset{n}{\sqcup} X_{2n} \\ & {}_{\mathllap{(\eta_{2n+1})_{n}}}\searrow& \downarrow^{\mathrlap{\exists \eta'}} & \swarrow_{\mathrlap{(\eta_{2n})_n}} \\ && F } \;\;\;\;\;\;\;\;\; \Leftrightarrow \;\;\;\;\;\;\;\;\; \array{ && F(X') \\ &{}^{\mathllap{\exists \eta'}}\nearrow& \downarrow^{\mathrlap{epi}} \\ &\ast \overset{(\eta_n)_n}{\longrightarrow}& \underset{\longleftarrow}{\lim}_n F(X_n) \\ & \swarrow && \searrow \\ \underset{n}{\prod}F(X_{2n+1}) && && \underset{n}{\prod}(X_{2n}) \\ & \searrow && \swarrow \\ && \underset{n}{\prod}F(X_n) } \,.

    Finally I added a diagram making manifest why the map thus constructed is in indeed (not just surjective, which is obvious by construction) but also injective.

    Notice that, as highlighted at the beginning of the proof, the above diagrams on the left are in PSh(Ho(𝒞))PSh(Ho(\mathcal{C})) instead of in Ho(𝒞)Ho(\mathcal{C}), in order to allow the functor FF to be part of the diagram. I find that this move serves to make the argument much more transparent, as witnessed (I think) by these diagrams.

    • CommentRowNumber12.
    • CommentAuthorDavid_Corfield
    • CommentTimeAug 23rd 2018

    Where the page Brown representability theorem has:

    and also weak pushouts (namely, homotopy pushouts)

    presumably this is relying on the comment at weak limit that in some cases homotopy limits and weak limits relate.

    That’s presumably worth a comment.

    • CommentRowNumber13.
    • CommentAuthorDavid_Corfield
    • CommentTimeAug 23rd 2018

    So I directed to that discussion.

    diff, v47, current

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeSep 26th 2021

    have added previously missing links (jstor, DOI) to:

    diff, v50, current