Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty book bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex-geometry computable-mathematics computer-science constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory history homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeNov 19th 2009

    added the general definition to cofibrantly generated model category

    (that entry still deserves more attention, though...)

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeNov 23rd 2009

    added to cofibrantly generated model category the statement and proof of Kan's "recognition theorem" under Properties.

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeNov 24th 2009

    removed from cofibrantly generated model category the extra section on presentable ones, which became superfluous after Mike (if I saw correctly) added the clause that generating cofibrations and acyclic cofibrations admit the small object aregument.

    Instead, I moved now the statement that  cof(I) = llp(rpl(I)) below the main definition and supplied the details of the proof

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeApr 15th 2012

    Started at cofibrantly generated model category a section Presentation and generation with some statement. To be expanded.

    • CommentRowNumber5.
    • CommentAuthorTim_Porter
    • CommentTimeJul 21st 2013

    Does anyone have a reference for non-cofibrantly generation of pro-space (and more generally pro-model category) model structures? Boris Chorny makes reference to this in one of his papers, but I cannot find the comment in the referred paper (at least on the version I have of it).

    It seems that pro-spaces have a fibrantly generated model structure on the other hand. Again does any one know good references for such (other than taking the dual of a cofib one)? These would seem to be important in some of the motivic contexts, but I quickly get out of my depth there. I am needing this for the profinite homotopy stuff that I am writing but will eventually put more on the Lab.

    • CommentRowNumber6.
    • CommentAuthorZhen Lin
    • CommentTimeJul 21st 2013

    Perhaps you’re thinking of Isaksen [2001], A model structure on the category of pro-simplicial sets? There it is remarked that the factorisations are not even functorial – so it’s neither fibrantly nor cofibrantly generated. (To be clear, what is proved (§ 19) is that it is not cofibrantly generated; but Isaksen says that factorisations are not functorial either.)

    • CommentRowNumber7.
    • CommentAuthorTim_Porter
    • CommentTimeJul 21st 2013
    • (edited Jul 21st 2013)

    Thanks, Zhen Lin. I checked my preprint copy and found no section 19. I must have an earlier version. I will look for the newer version. (I have found the TAMS version on my hard disc, so fine, and again thanks.)

    • CommentRowNumber8.
    • CommentAuthorTim_Porter
    • CommentTimeJul 22nd 2013

    Actually, the proof of factorisation suffers from the inadequacy of language. Isaaksen shows that there is a factorisation but does not claim that it is functorial. in the process he says it is non-functorial' rather than sayingfunctoriality is not claimed’ or similar. This looks a bit like an example of the red herring principle in disguise!

    These interactions between the set theory used for setting up pro-sSet and the small object argument intrigue me. Does anyone have any ‘wisdom’ to enlighten me? (Note it seems that pro-sSet may be fibrantly generated!)

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)