Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeFeb 4th 2013
    • (edited Feb 4th 2013)

    I find the concept-formation for 2-rings in

    • Alexandru Chirvasitu, Theo Johnson-Freyd, The fundamental pro-groupoid of an affine 2-scheme (arXiv:1105.3104)

    particularly clear-sighted. Among other things it improves on the rationale for considering associative algebras as 2-modules/2-vector spaces and sesquialgebras as 2-rings/3-modules/3-vector spaces.

    Where Baez-Dolan defined a “2-rig” to be a compatibly monoidal cocomplete category, theses authors observe that one should require a bit more and define a 2-ring to be a compatibly monoidal presentable category. (This follows Jacob Lurie’s discussion, some of which is alluded to at Pr(infinity,1)Cat).

    I have now written out some of the basic definitions and statements at 2-ring in a new subsection Compatibly monoidal presentable categories. I also re-organized the full Definition section a bit, adding a lead-in discussion.

    • CommentRowNumber2.
    • CommentAuthorzskoda
    • CommentTimeFeb 4th 2013
    • (edited Feb 4th 2013)

    The paper says it goes to define a notion which generalizes simultaneously Grothendieck topoi and the abelian categories of quasicoherent sheaves. This is achieved similarly in a bit earlier work of Durov on vectoids (by the concept of a symmetric monoidal vectoid) see the reference there, unfortunately not cited in above work. It has a bit similar conditions to presentability or to completeness/totality, though not quite the same. The 2-category of vectoids has simpler properties than the 2-category of topoi, has interesting classifying objects (classifying vectoids) and it also explains an origin of some operad-like notions.

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeFeb 4th 2013
    • (edited Feb 4th 2013)

    True, the notion of monoidal vectoid refines the Baez/Dolan notion of 2-rig and is pretty close to the Chirvasitu/Johnson-Freyd notion of 2-ring. I am addding a pointer to this now to 2-ring.

    • CommentRowNumber4.
    • CommentAuthorzskoda
    • CommentTimeFeb 4th 2013

    I added the reference to the earlier and quite different notion of categorical ring in a work of Jibladze and Pirashvili.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)