Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMay 28th 2013

    Chow motive, a quick definition

    • CommentRowNumber2.
    • CommentAuthoradeelkh
    • CommentTimeMay 28th 2013

    Well, there is some overlap with pure motive. I guess there should be a single page titled pure Chow motive...

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeMay 28th 2013
    • (edited May 28th 2013)

    Ah, thanks.

    I have added quick cross-references. Why “pure”? That should be explained in the entry!

    (And why does no expert ever write a decent account of the various definitions in motivic cohomology?)

    • CommentRowNumber4.
    • CommentAuthoradeelkh
    • CommentTimeMay 28th 2013
    • (edited May 28th 2013)

    In my opinion, we really need an expert to rewrite basically everything on the nLab about motives!

    Why “pure”?

    In my (very minimal) understanding, the category of pure motives has smooth projective varieties as its objects, while the category of mixed motives is supposed to be constructed from all smooth varieties. It is supposed to be an abelian tensor category which contains the pure motives as the full category of semisimple objects. So far there is no realisation of such a category, but there are proposals by Voevodsky and Levine of triangulated categories that behave as its derived category is expected to.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeMay 29th 2013

    In my opinion, we really need an expert to rewrite basically everything on the nLab about motives!

    Yes, I think that’s true. But what I find surprising is that without being an expert having some inside knowledge, the literature alone makes it hard to just extract the definitions. There are many fields in which I am not expert, but for which I can easily state the fundamental definitions, simply by looking them up in the literature. For motivic cohomology that is much less so.

    I remember my enthusiasm when I was finally told where the actual definition of derived motives is stated, at least essentially precisely (namely in the introduction to Cisinki-Déglise). This I had tried to record at motve in the section Idea of the precise abstract definition of derived motives.

    Maybe with enough joint effort we can eventually collect enough information and eventually feel confident to rewite the motivic entries from scratch and coherently.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeMay 29th 2013

    In my (very minimal) understanding, the category of pure motives has smooth projective varieties as its objects, while the category of mixed motives is supposed to be constructed from all smooth varieties. It is supposed to be an abelian tensor category which contains the pure motives as the full category of semisimple objects. So far there is no realisation of such a category, but there are proposals by Voevodsky and Levine of triangulated categories that behave as its derived category is expected to.

    Thanks!

    I have used that to create a stub for mixed motive and and I have given pure motive one more lead-in sentence in order to reflect this.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeMay 29th 2013

    But in view of this it seems to actually make sense to have pure motive and Chow motive be distinct entries, doesn’t it? For I suppose we can (and already do, it seems) consider other types of categories not built via Chow motives and still distinguish for them between pure and mixed motives. No?

    • CommentRowNumber8.
    • CommentAuthorzskoda
    • CommentTimeMay 29th 2013
    • (edited May 29th 2013)

    FYI, the wikipedia entry on motives is not that bad. One should also point out the related distinction pure versus mixed Tannakian categories which is something of the sort of single fiber functor vs. the fiber functor for every such and such field extension, what boils down to working with a gerbe.

    • CommentRowNumber9.
    • CommentAuthorzskoda
    • CommentTimeMay 29th 2013

    Kontsevich’s motives which extend the motive idea to categorical framework (categories enriched in spectra) has lots of simplicifications with respect to the usual theory. For example, no need for starting technical tools like Chow moving lemma and the framework of spectral categories is itself manifestly close to the topological picture. It is also a bit more general, as it includes the noncommutative examples like Landau-Ginzburg models. Thanks to Cisinski and Tabuada the comparison with the usual motives is written out in rigorous detail. Finally, MK mentioned few times in his talks that he believed that there is a version which could be stated in terms of nuclear spaces or alike, thus bringing the whole picture of algebraic motives to operator algebraic framework, but this is just a conjecture so far.

    • CommentRowNumber10.
    • CommentAuthoradeelkh
    • CommentTimeMay 29th 2013

    Maybe with enough joint effort we can eventually collect enough information and eventually feel confident to rewite the motivic entries from scratch and coherently.

    I am trying to learn this stuff now so I'll try to contribute what I can.

    But in view of this it seems to actually make sense to have pure motive and Chow motive be distinct entries, doesn’t it? For I suppose we can (and already do, it seems) consider other types of categories not built via Chow motives and still distinguish for them between pure and mixed motives. No?

    Okay, well you can take any adequate equivalence relation, and what you get probably can be called a category of pure motives. And pure Chow motives would then be the specific case of rational equivalence.

    • CommentRowNumber11.
    • CommentAuthorzskoda
    • CommentTimeMay 29th 2013

    Okay, well you can take any adequate equivalence relation, and what you get probably can be called a category of pure motives.

    This difference is not essential from the theoretic point of view.

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeMay 29th 2013
    • (edited May 29th 2013)

    It seems to be very essential in the theory at least right now, since everybody is talking about all those different flavors of motives like “Chow motives”, “Voevodsky motives”, “derived motives”, “Nori motives” and whatnot. As far as I can see for all of them it makes sense in principle to distinguish between the pure and the mixed version.

    Maybe one day in 50 years when the dust here has settled and everybody knows what is supposed to be meant by “motive” this may be different. But right now this does not seem to be the case.

    • CommentRowNumber13.
    • CommentAuthoradeelkh
    • CommentTimeMay 29th 2013
    • (edited May 29th 2013)

    Okay, well you can take any adequate equivalence relation, and what you get probably can be called a category of pure motives.

    This difference is not essential from the theoretic point of view.

    What I mean is that only the category obtained using rational equivalence should be called "pure Chow motives". So Urs is right to keep the pages separate, I guess.

    Though to be honest, I don't understand in which respect the difference is not essential. After all the categories Mot_rat and Mot_num are certainly not the same category in general.

    • CommentRowNumber14.
    • CommentAuthorzskoda
    • CommentTimeMay 29th 2013
    • (edited May 29th 2013)

    Adel: This is the discussion which we had before. Some people call Chow rings for any adequate equivalence relation, more classical default case is for the rational equivalence. The same is for the Chow motives.

    Urs: I am not discussing the difference between derived and nonderived, mixed and pure, zero characteristics and positive etc. which ARE essential to discuss separately. But I see no reason to have separate entry for Chow motives for the classical case of rational equivalence, vs. the other Weil cohomology theories, like for numerical equivalence. It is just one parameter different (as far as the definitions are concerned).

    Maybe one day in 50 years when the dust here has settled and everybody knows what is supposed to be meant by “motive” this may be different.

    Not quite, the differences I stated above will stay different (like positive vs zero characteristics, mixed vs pure etc.).

    • CommentRowNumber15.
    • CommentAuthoradeelkh
    • CommentTimeMay 29th 2013

    I think what makes most sense is to have a page pure motives which mentions pure Chow motives as the case \sim = rat.

    • CommentRowNumber16.
    • CommentAuthorzskoda
    • CommentTimeMay 29th 2013

    A separate page to mention a parameter in one line ?? I disagree. Many people will get there by coincidence and better they see the full uniform treatment with the line inserted at some place. One line difference does not qualify for the separate page, we often have more than one notion in the same page if common treatment is beneficial. Of course, if you have a detailed material of properties which are specific for motives for rational equivalence then one needs pure Chow motive separate from pure motive in general.

    • CommentRowNumber17.
    • CommentAuthoradeelkh
    • CommentTimeMay 29th 2013

    Sorry, what I meant was to merge the current pages Chow motive and pure motive into a page called "pure motive", mentioning pure Chow motives as the special case.

    • CommentRowNumber18.
    • CommentAuthorzskoda
    • CommentTimeMay 29th 2013

    Right, that is what I think is sensible at this point !

    • CommentRowNumber19.
    • CommentAuthorUrs
    • CommentTimeMay 29th 2013
    • (edited May 29th 2013)

    Please don’t do away with the page Chow motive as is. I want a page to which people can go and see right away that a Chow motive is a certain equivalence classes of linear combinations of spans, without much distraction around it.

    But if you work on the entry pure motive to make it better, that would be great.

    • CommentRowNumber20.
    • CommentAuthorzskoda
    • CommentTimeMay 29th 2013

    Urs, if you want that the merged page starts with the material now at Chow motive and the other remarks below in scrolling down this is OK, but I see no reason that the two would not be covered in the same page with redirects.

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTimeMay 29th 2013
    • (edited May 30th 2013)

    Why don’t you first do the major revision of the pure motive entry and then when done we can still think about killing the entry on Chow motives or not.

    • CommentRowNumber22.
    • CommentAuthoradeelkh
    • CommentTimeMay 29th 2013

    I edited pure motive.

    • CommentRowNumber23.
    • CommentAuthorUrs
    • CommentTimeMay 30th 2013
    • (edited May 30th 2013)

    Thanks!

    I have looked through it:

    • I gave the definition of each of the several categories its own three-hashed subsection (where you had boldface keywords).

    • in the direct sum formua for the homs in CorrCorr I replaced α\oplus_\alpha with i\oplus_i, for I suppose that was a typo, but check;

    • in the section on “Category of effective pure motives” I fixed what I think was a typo by setting pCorr(h(X),h(X))p \in Corr(h(X), h(X)) instead of Corr(h(X),h(Y))Corr(h(X), h(Y)). But then I am still unsure about your description of the morphisms. Could you check if that’s what you mean to say? Maybe I am mixed up.

    • still in the section “Category of effective pure motives” I added a statement of the functor h:SmProj(k)Mor eff(k,A)h : SmProj(k) \to Mor^{eff}_\sim(k,A) and that its images are called “the motives of a variety”, so that this term has been introduced before it is used in the next section

    • CommentRowNumber24.
    • CommentAuthorUrs
    • CommentTimeMay 30th 2013
    • (edited May 30th 2013)

    Ah, and I gave several of the “CorrCorr” a subscript “Corr Corr_\sim”, for I thought that was missing.

    Maybe you should go through the whole thing and check the notation again for typos – possibly new typos now introduced by me. ;-)

    • CommentRowNumber25.
    • CommentAuthorUrs
    • CommentTimeMay 30th 2013

    I have now adapted the notation and terminology at Chow motive to that at pure motive. But please check.

    • CommentRowNumber26.
    • CommentAuthoradeelkh
    • CommentTimeMay 30th 2013

    Thanks. Everything looks good to me!

    • CommentRowNumber27.
    • CommentAuthorUrs
    • CommentTimeMay 30th 2013
    • (edited May 30th 2013)

    Okay, thanks.

    One remaining question: where it says

    and morphisms from (h(X),p)(h(X), p) to (h(Y),q)(h(Y), q) are compositions qαpq \circ \alpha \circ p with αCorr (h(X),h(Y))\alpha \in Corr_{\sim}(h(X), h(Y))

    should it not read

    and morphisms from (h(X),p)(h(X), p) to (h(Y),q)(h(Y), q) are elements αCorr (h(X),h(Y))\alpha \in Corr_{\sim}(h(X), h(Y)) such that pα=α=αqp \circ \alpha = \alpha = \alpha \circ q

    i.e. the standard formula for the morphisms in the Karoubi envelope? Or do you mean something else? (Or maybe I am missing something.)

    • CommentRowNumber28.
    • CommentAuthoradeelkh
    • CommentTimeMay 30th 2013
    • (edited May 30th 2013)

    These are actually the same. If β=qαp\beta = q \circ \alpha \circ p for some α\alpha, then qβ=β=βpq \circ \beta = \beta = \beta \circ p is clear, and so is the converse (taking α=β\alpha = \beta).

    • CommentRowNumber29.
    • CommentAuthorUrs
    • CommentTimeMay 30th 2013

    Okay, fair enough. But how about we write more explicitly

    and morphisms from (h(X),p)(h(X), p) to (h(Y),q)(h(Y), q) are morphisms h(X)h(Y)h(X) \to h(Y) of the form qαpq \circ \alpha \circ p with αCorr (h(X),h(Y))\alpha \in Corr_{\sim}(h(X), h(Y))

    • CommentRowNumber30.
    • CommentAuthoradeelkh
    • CommentTimeMay 30th 2013

    Yes, that’s a good idea.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)