Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeOct 31st 2013
    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeMay 16th 2014
    • (edited May 16th 2014)

    I have added a detailed remark on the issue “elliptic curve”\leftrightarrow“its Picard group” to elliptic spectrum.

    Currently it reads as follows:

    Originally (and still in many or even most references), def. \ref{EllipticSpectrum} is stated with the formal Picard group Pic A 0Pic_A^0 replaced by the formal completion A^\hat A of AA at its neutral element.

    These two versions of the definition in itself are equivalent, since elliptic curves are self-dual abelian varieties equipped with a canonical isomorphism APic X 0A\simeq Pic_X^0exhibited by the Poincaré line bundle.

    But for the development of the theory, notably for application to equivariant elliptic cohomology, for the relation of elliptic cohomology to loop group representations etc., it is crucial to understand that E (BU(1))E^\bullet(B U(1)) is the space of sections of a line bundle over a (formal) moduli space of line bundles on the elliptic curve, instead of on the elliptic curve itself.

    Indeed, generally for GG a compact Lie group, then E (BG)E^\bullet(B G) is the space of sections of the WZW model-line bundle on the (formal) moduli space of flat connections on GG-principal bundles over the elliptic curve. This is the central statement at equivariant elliptic cohomology. As the appearance of the WZW model here shows, this is also crucial for understanding the role of elliptic spectra in quantum field theory/string theory, see at equivariant elliptic cohomology – Interpretation in Quantum field theory/String theory for more on this.

    Moreover, understanding SpecE (BU(1))Spec E^\bullet(BU(1)) as being about moduli of line bundles on the elliptic curve is crucial for understanding the generalization of the concept of elliptic spectra, for instance to K3-spectra. This is indicated in the following table

    !include moduli of higher lines – table

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeNov 16th 2020

    Fixed a typo in a formula for the identification of a formal elliptic curve with its formal Picard scheme

    diff, v13, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)