Want to take part in these discussions? Sign in if you have an account, or apply for one below
Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.
finally created the category:reference-entry for Lurie’s chromatic lecture. See Chromatic Homotopy Theory
(And as a special service to the community… with lecture titles. ;-)
Lecture 1 Introduction (pdf)
Lecture 2 Lazard’s theorem (pdf)
Lecture 3 Lazard’s theorem (continued) (pdf)
Lecture 4 Complex-oriented cohomology theories (pdf)
Lecture 5 Complex bordism (pdf)
Lecture 6 MU and complex orientations (pdf)
Lecture 7 The homology of MU (pdf)
Lecture 8 The Adams spectral sequence (pdf)
Lecture 9 The Adams spectral sequence for MU (pdf)
Lecture 10 The proof of Quillen’s theorem (pdf)
Lecture 11 Formal groups (pdf)
Lecture 12 Heights and formal groups (pdf)
Lecture 13 The stratification of (pdf)
Lecture 14 Classification of formal groups (pdf)
Lecture 15 Flat modules over (pdf)
Lecture 16 The Landweber exact functor theorem (pdf)
Lecture 17 Phanton maps (pdf)
Lecture 18 Even periodic cohomology theories (pdf)
Lecture 19 Morava stabilizer groups (pdf)
Lecture 20 Bousfield localization (pdf)
Lecture 21 Lubin-Tate theory (pdf)
Lecture 22 Morava E-theory and Morava K-theory (pdf)
Lecture 23 The Bousfield Classes of and (pdf)
Lecture 24 Uniqueness of Morava K-theory (pdf)
Lecture 25 The Nilpotence lemma (pdf)
Lecture 26 Thick subcategories (pdf)
Lecture 27 The periodicity theorem (pdf)
Lecture 28 Telescopic localization (pdf)
Lecture 29 Telescopic vs -localization (pdf)
Lecture 30 Localizations and the Adams-Novikov spectral sequence (pdf)
Lecture 31 The smash product theorem (pdf)
Lecture 32 The chromatic convergence theorem (pdf)
Lecture 33 Complex bordism and -localization (pdf)
Lecture 34 Monochromatic layers (pdf)
Lecture 35 The image of (pdf)
1 to 1 of 1