Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeDec 6th 2013
    • (edited Dec 6th 2013)

    slightly edited AT category to make the definition/lemma/proposition-numbering and cross-referencing to them come out.

    Probably Todd should have a look over it to see if he agrees.

    • CommentRowNumber2.
    • CommentAuthorDavid_Corfield
    • CommentTimeDec 6th 2013

    Any new thoughts on your question of whether there’s some relation to the Goodwillie calculus?

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeDec 6th 2013
    • (edited Dec 6th 2013)

    Indeed, it was some thinking in this direction that made me come back to the entry of AT-categories. But I am not sure yet.

    I need an axiomatic way to characterize an ambient \infty-topos such that to each object XX is associated a closed symmetric monoidal \infty-category EMod(X)E Mod(X) and to suitable morphisms f:XYf : X \to Y a Wirthmüller context (f !f *f *):EMod(X)EMod(Y)(f_! \dashv f^\ast \dashv f_\ast) : E Mod(X) \to E Mod(Y).

    In tangent cohesion we have something close: here it is immediate to say GL 1(E)Mod(X)GL_1(E) Mod(X) and so forth. I have to see how much that helps me.

    Specifically I am interested in E E_\infty-rings EE that are obtained from free E E_\infty-rings on an abelian \infty-group (connective spectrum) after inverting some elements. For these I might actually get away with GL 1(E)ModGL_1(E) Mod. Not sure yet.

    • CommentRowNumber4.
    • CommentAuthorDavid_Corfield
    • CommentTimeDec 7th 2013

    Is there any way to get at a (,1)(\infinity, 1)-version of Freyd’s AT result? Are stable (infinity,1)-categories the right analogue of abelian categories? Would there need to be a notion of (,1)(\infinity, 1)-pretoposes?

    • CommentRowNumber5.
    • CommentAuthorTodd_Trimble
    • CommentTimeDec 7th 2013
    • (edited Dec 7th 2013)

    Urs #1: not only do I agree, but I thank you. I’ve taken advantage of your improved structuring by rewriting some of the proofs so that they link back in logical fashion.

    There’s something I find a little ungainly though in Freyd’s development; intriguing though the result is, the axioms look pretty ad hoc, and that probably explains why there hasn’t been much work on them. Perhaps this should be revisited.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeDec 7th 2013
    • (edited Dec 7th 2013)

    I think David has a good point, in that in the context of \infty-category theory the role of abelian categories is played by stable \infty-categories, and these already share some key abstract properties with \infty-toposes.

    The most striking one is probably the “stable Giraud theorem” which says that presentable stable \infty-categories are precisely the lex reflective acessible localizations of categories of presheaves of spectra, just like sheaf \infty-toposes are precisely the lex reflective accessible localizations of the categories of presheaves of homotopy types.

    As a slogan this means: stable \infty-categories are to \infty-toposes as stable homotopy types are to homotopy types.

    Now for a given \infty-site of definition, the tangent (infinity,1)-category of the \infty-topos over that site, unifies both of these: it has both the \infty-topos as well as the stable \infty-category over that site as full sub-\infty-categories.

    At this point one seems to be pretty close to what Freyd was after, maybe one should play with this a bit more.

    • CommentRowNumber7.
    • CommentAuthorDavid_Corfield
    • CommentTimeJul 4th 2017

    Since at AT category there’s a topos version of the idea TA category after the main pretopos version, does Mike’s new definition of elementary (infinity,1)-topos suggest anything for my question in #4?

    Another thought, should there be a concept of (,1)(\infty, 1)-pretopos?

    • CommentRowNumber8.
    • CommentAuthorMike Shulman
    • CommentTimeApr 29th 2019

    Suppose 𝒜\mathcal{A} is an abelian category, 𝒯\mathcal{T} is a pretopos, and G:𝒜𝒯G:\mathcal{A} \to \mathcal{T} is a left exact functor (such as the forgetful functor AbSetAb\to Set). Then unless I am mistaken, then Artin gluing (𝒯G)(\mathcal{T} \downarrow G) is a “weak AT category”, i.e. it satisfies Freyd’s universal Horn axioms but not the existential AE axiom. So that axiom is actually doing something to cut down the class of models, and there are interesting models of the rest of the axioms that aren’t products. I wouldn’t be surprised if there are other axioms we can impose to characterize such gluings among the AT categories, similarly to how every quasitopos is the Artin gluing of a Heyting algebra with an extensive quasitopos (A2.6.7 in the Elephant).

    This also suggests to me that AT categories are not doing quite the same thing as tangent \infty-categories: both of them are a way to put together an abelian thing with a topos thing, but the ways of putting them together are different. I wonder what elementary axioms are satisfied by categories like Fam(Ab)Fam(Ab), the obvious 1-categorical analogue of parametrized spectra?

    • CommentRowNumber9.
    • CommentAuthorMike Shulman
    • CommentTimeApr 29th 2019

    Actually, here is one additional axiom on a weak AT category that suffices to enable reconstruction of the functor GG from (𝒯G)(\mathcal{T}\downarrow G): the object 00 is exponentiable (in the cartesian sense). This is true in a topos, of course, but also in any pretopos since A 0=1A^0=1, and also in any abelian category where A 0=AA^0=A. And in (𝒯G)(\mathcal{T}\downarrow G), for A=(A 0,A 1,A 1G(A 0))A = (A_0, A_1, A_1 \to G(A_0)) we have A 0=(A 0,G(A 0),id G(A 0))A^0 = (A_0, G(A_0), id_{G(A_0)}). So for a type A object AA, which is of the form (A 0,0,0G(A 0))(A_0, 0, 0\to G(A_0)), we have T(A 0)T(A^0) being the type T object corresponding to G(A 0)G(A_0), namely (1,G(A 0),!)(1, G(A_0), !).

    In (𝒯G)(\mathcal{T}\downarrow G), the operation AA 0A\mapsto A^0 is a right adjoint modality to AA×0A\mapsto A\times 0, giving two different ways to embed 𝒜\mathcal{A} into the gluing category. In general, once this is true, if we define G(A)=T(A 0)G(A) = T(A^0), then the map A 0T(A 0)A^0 \to T(A^0) induces a functor from 𝒞\mathcal{C} to the gluing category of this GG (as a functor from the abelian category of type A objects to the pretopos of type T objects), and so there should be axioms ensuring that this functor is an equivalence.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)