Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorMike Shulman
    • CommentTimeDec 25th 2009
    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeNov 26th 2012
    • (edited Nov 26th 2012)

    Somebody asks me by email where the proofs for the claims at reflexive coequalizers can be found. Apparently not all of them are in the single reference cited there, and the question is to who to attribute them. But I haven’t checked, no time right now. Somebody who feels responsible for this please check. (I suggested to that person to forward his question to here, but I don’t know if he will.)

    • CommentRowNumber3.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 26th 2012
    • (edited Nov 26th 2012)

    Urs, I think there are other entries which indicate the proofs, but I’m happy to give them here as well (at least some of them). Linton was of course cited.

    Edit: I recall that a proof of proposition 1 is given on page 1 of Johnstone’s Topos Theory (baby elephant), at least in essence. But somebody who has that book at hand can hopefully confirm.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeNov 26th 2012

    I understand the question as mainly asking for who to attribute these statements to, as some of them are apparently not in Linton. I haven’t checked. But if you can add a remark clarifying this, it would be great in any case.

    • CommentRowNumber5.
    • CommentAuthorTodd_Trimble
    • CommentTimeNov 26th 2012

    Well, I’ve added a proof of proposition 1 and some other things, and I cited things as best as I have direct knowledge of. Some of this might be folkloric; I’d maybe take a peek at the Johnstone reference, but I don’t think he cited a source for the lemma on page 1. Some of this reprises material in colimits in categories of algebras.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeNov 26th 2012

    Thanks, Todd! That’s awesome. I’ll notify my correspondent of these additions (in case he didn’t follow my pointer to have a look here at the forum…)

  1. Link was dead

    Anonymous

    diff, v11, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)