Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf sheaves simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTodd_Trimble
    • CommentTimeFeb 12th 2014

    I have been adding some material to matroid. I haven’t gotten around to defining oriented matroid yet (and of course there’s much besides to add).

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeFeb 12th 2014
    • (edited Feb 12th 2014)

    Just a boring typesetting issue: I have changed

      +-- {: .num_propoposition} 


      +-- {: .num_prop} 

    Unfortunately the first one does not come out as expected.

    • CommentRowNumber3.
    • CommentAuthorPeter Heinig
    • CommentTimeJun 6th 2017

    On the recent addition to matroid: graph-theorists reading “embedded subgraph” in this context are likely to find this malapropistic to the point of being wrong: “embedded graph” or “embedded graph” are usually reserved to discussions of, well, embedded graphs, i.e., discussions where there is some surface in the background, and some embedding of the abstract graph into the surface. The usual definition of “graphic matroid” does not need this. It would improve the paragraph to change “embedded subgraph” just to “subgraph”.

    A more serious issue is defining a graphic matroid on the vertex set: while this can be done (somehow), by far the most usual definition of graphic matroids has the edge set as the ground, see e.g. Oxley, 2nd ed, p. 11.

    Moreover, “it turns out” reads as if there is at least something to check, while in fact it is immediate from the usual definitions that dualization is involutive, and involutive with the isomorphism being a strict equality. I have much appreciation for the idea of avoiding equalities whenever possible, and it might be good to do so in this case, too, but just would like to remark that in matroid theory as it exists at the moment, the dual of the dual being the matroid itself is both strict and immediate from the definitions.

    Not knowing where you are heading, I will not change it for the time being.

  1. Peter wrote:

    It would improve the paragraph to change “embedded subgraph” just to “subgraph”.

    Todd, perhaps you meant “induced subgraph”?

    • CommentRowNumber5.
    • CommentAuthorTodd_Trimble
    • CommentTimeJun 6th 2017

    I did mean “induced subgraph”, yes.

    The word “embedded”, which you rightly point out would convey the wrong idea to graph theorists: I had in mind an analogy with (full) embeddings in category theory. But let’s change that to avoid misunderstanding. But not to just “subgraph” which might mean that not all the edges between vertices in the subgraph are actually in the subgraph.

    Please feel free to make appropriate changes to the description of graphic matroid and dual matroid. I was writing in a hurry there; sorry.

    • CommentRowNumber6.
    • CommentAuthorTodd_Trimble
    • CommentTimeJun 6th 2017

    By the way, Peter: any expertise you can bring to bear on graph theory matters is very appreciated! Thanks again.

    • CommentRowNumber7.
    • CommentAuthorjesse
    • CommentTimeJun 6th 2017
    • (edited Jun 6th 2017)

    @Todd, I see that last year you indicated that you had possibly done some original research on categories of matroids. Are there any updates on this?

    I thought for a while that geometries (in the sense of section 4 of the page matroid) were naturally a reflective subcategory of pregeometries with reflector given by geometrification (delete the closure of \emptyset and quotient by xycl(x)=cl(y)x \sim y \iff \operatorname{cl}(x) = \operatorname{cl}(y)). But if you use closure-preserving maps as morphisms, there doesn’t seem to be a natural way to define a counit…

    • CommentRowNumber8.
    • CommentAuthorTodd_Trimble
    • CommentTimeJun 6th 2017

    Okay, the mistakes kindly pointed out by Peter have been fixed (I believe).

    (J)esse: no, alas, there are no updates on this. My main interest in working on matroid at that time was more in view of model theory than anything else. But with luck I’ll get myself re-interested. :-)

  2. Linear and algebraic examples

    Ammar Husain

    diff, v26, current

  3. Representability

    Ammar Husain

    diff, v26, current

    • CommentRowNumber11.
    • CommentAuthorMarc
    • CommentTimeJan 24th 2021

    Added the simplified rephrasing of the exchange condition for topological spaces in the examples section. Has this condition a special name in the literature on topological spaces?

    diff, v28, current

  4. Added reference

    diff, v29, current

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTime6 days ago
    • (edited 6 days ago)

    Moved the original article

    out of the list of “Other references” to before Heunen’s article.

    diff, v30, current

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTime6 days ago

    Re-organized a little: moved the section on model-theoretic geometry to a sub-section of the “Definition”-section

    diff, v30, current

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTime6 days ago

    added publication data for:

    diff, v31, current

  5. Added a reference to Bruhn–Diestel–Kriesel–Pendaving–Wollan’s Axioms for infinite matroids. (Working their definition into the main text would require some restructuring; it’s the current Definition 2.1 plus the requirement that every independent set is contained in a maximal independent set.)


    diff, v32, current

  6. Following on from the discussion on another thread, we were wondering about the efficacy of matroids. Just to jot down some relevant things:

    There’s the idea that matroids can be understood within tropical geometry, and then a relevant cohomology deployed.

    Matthieu Piquerez: Hodge theory for tropical fans

    On the introduction to the present symposium, one can read “But the [Heron-Rota-Welsh] conjecture was for an arbitrary matroid, which might not be associated to any type of geometry at all! The proof by Adiprasito–Huh–Katz builds an object from combinatorics, which ought to play the role of the cohomology ring, and proves Poincaré duality, Hard Lefschetz and the Hodge–Riemann bilinear relations for this object directly.”

    In this talk, I will show that, on the contrary, these results has a geometric interpretation for any matroid… in the tropical world. Indeed, one can show that the tropical cohomology of the canonical compactification of so-called tropically shellable quasi-projective fans verifies the three above properties. In particular, Bergman fans of matroids belong to those fans, hence we get a generalization of the result of Adiprasito–Huh–Katz. This is a joint work with Omid Amini.

    From Piqurez’s thesis

    The cohomology of a tropical variety mimics that of a complex variety. A theory of great importance in complex geometry is Hodge theory. It shows numerous interesting properties of cohomologies of complex varieties, and over the decades it has plenty of applications. In this thesis, we achieve to establish a tropical Hodge theory, that is a Hodge theory for tropical varieties.

  7. By the way, Urs, on the other thread what did you mean by

    such a basic modal-type-theoretic concept as matroids ?

    • CommentRowNumber19.
    • CommentAuthorUrs
    • CommentTime4 days ago
    • (edited 4 days ago)

    re #18:

    By the definition here, and remembering that “closure operator” is another term for modality, a matroid is a type satisfying a curious condition with respect to a given modality.

    It would be good to understand this condition on more general abstract grounds. If we consider pointed types, so that the formation of complements used in the condition is expressible as cofibers, then the condition involves a variant of the modal axiomatization of “determinate negation”. But I haven’t further thought about it yet.

  8. From the paper in #15, the category of free pointed matroids with pointed strong maps is equivalent to the category of finite pointed sets (Prop 5.7) (the brackets round the dot seem to be a typo), so equivalent to 𝔽 1\mathbb{F}_1 vector spaces.

    Then there’s an adjoint quadruple between free pointed matroids and pointed matroids (Thrm 6.9).

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTime4 days ago

    If I had leisure to dig into matroids now, I would warm-up with spelling out the basic elementary examples in more detail – the nLab entry leaves enormous room for improvement in this respect.

    The first example to spell out would be that of vector spaces. The entry should state and prove (all completely elementary, but still) that the functor taking kk-vector spaces to their matroids is not full (for example, after fixing any norm ||\vert-\vert on a finite dimension vector space VV, the map v|v|vv \mapsto \vert v\vert \cdot v should be an endomorphism of the matroid of VV which is not a linear map) and preferably comment on what this “means”.

    (I don’t know what it means, but it seems like a first indication of an important point of the whole subject. Or maybe one of the many extra conditions on matroids that are being considered does make it become full?)

    Then to incrementally generalize from this example to that of linear tropical geometries. This to get a foot on the ground of what the subject matter of matroids really is like.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)