Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeApr 6th 2014

    it seems we were lacking an entry completion of a ring. I started a bare minimum and cross-linked with p-adic integers and localization of a ring. Wanted to do more, but am being interrupted now.

    • CommentRowNumber2.
    • CommentAuthorTim_Porter
    • CommentTimeApr 6th 2014

    Urs: is there a need for a wider interpretation of ‘completion’ in this context? This deals with completion in the II-adic topology, but ring theorists also look at other topologies given by other topologies / filtrations.

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeApr 6th 2014

    Yes, no time, please do

    • CommentRowNumber4.
    • CommentAuthorTim_Porter
    • CommentTimeApr 7th 2014

    I have created linear topological ring. Just a stub for the moment. It should link with the ideas around completion of a ring eventually, but also with the mention under Grothendieck category…. that is, sort-of, the plan.

    • CommentRowNumber5.
    • CommentAuthorzskoda
    • CommentTimeApr 7th 2014
    • (edited Apr 7th 2014)

    A completion of a ring is a completion of a ring to a complete topological ring.

    It makes sense only if the original ring is a topological ring. So I am adding word topological and two more sentences to Idea.

    A nice subcategory of topological rings suitable for a more general variant of formal schemes and alike objects are pseudocompact rings.

    • CommentRowNumber6.
    • CommentAuthorzskoda
    • CommentTimeApr 7th 2014

    I have changed somewhat linear topological ring to have it compatible with uniform filter. Unfortunately, I made some confusion creating topologizing filter entry with nonstandard definition; I think now it is accepted that uniform and topologizing should be the same. In fact, all three entries should be eventually merged with redirects.

    • CommentRowNumber7.
    • CommentAuthorTim_Porter
    • CommentTimeApr 7th 2014

    I added a few words to explain the II-adic topology on RR, so as to make sense of the first example (or zeroth example as the examples come after it!)

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeApr 7th 2014
    • (edited Apr 7th 2014)

    Thanks for the additions!

    I made adic topology a hyperlink… to discover that it already redirects to adic noetherian ring

    Do we want to have two different entries for these two keywords?

    • CommentRowNumber9.
    • CommentAuthorTim_Porter
    • CommentTimeApr 7th 2014
    • (edited Apr 7th 2014)

    I suggest just putting an entry for linear topological ring at adic noetherian ring and getting the group of entries interrelating well, possibly with rewording in places. There is no real conflict, except that if one takes the II-adic topology on RR, it is not, to start off with, necessarily complete, hence the need for a completion. (This may suggest that the redirect needs to be more via the ‘Related Ideas’ than in the form of an actual redirect.

    There are at least two separate directions to develop from this area of the Lab, so there will be readjustments needed later on so not to worry too much at the moment.

    One question we DO have to address is when the rings are commutative, as in general they should not be, but for some applications the main examples are.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeApr 7th 2014
    • (edited Apr 7th 2014)

    Going in this spirit, I have added a remark to p-adic integer on their interpretation as the formal neighbourhood of a prime.

    • CommentRowNumber11.
    • CommentAuthorzskoda
    • CommentTimeApr 7th 2014
    • (edited Apr 7th 2014)

    9, Tim, linear topologizing rings have NOTHING to do with noetherianess!

    And not that much to do with adic topologies on commutative rings (the latter may provide an example, though).

    • CommentRowNumber12.
    • CommentAuthorTim_Porter
    • CommentTimeApr 7th 2014

    I note the mention in formal spectrum of ind-schemes. Does anyone know if anyone has explored the square of ideas linking ind-object in CC with pro-objects in C opC^{op} via a duality, then pro-artinian rings are pseudocompact, and pseudo-compact (coherent?) modules over such form the dual of a Grothendieck category. I feel that there should be some missing bits to this and the each part needs categorifying slightly to get a useful NCG situation. (I am being vague because I do not understand NCG.)

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeJul 21st 2014
    • (edited Jul 21st 2014)

    I have edited at completion of a ring a bit.

    First I expanded what is still titled the Idea-section, trying make clear that to get the underlying ring of a formally completed ring, that limit over quotient rings is taken indeed in the category of (just) commutative rings.

    In the course of this I ended up making the whole Idea-section a bit more verbose. And then I expanded the Examples-section a fair bit.

    • CommentRowNumber14.
    • CommentAuthorzskoda
    • CommentTimeJul 21st 2014

    I am just to going away to travel so no time. The general completion is relative: ring completes in more general ring, topological formal whatever context. So let us have that in mind (the current picture is rather special case).

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeAug 11th 2014

    added pointers at_completion of a ring_ to page and verse of the excellent (and apparently more or less original) text (Sullivan 1970/2005).

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)