Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMay 28th 2014

    have added a tad more content to Stein manifold and cross-linked a bit more

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeMay 28th 2014

    Added the statement of Cartan’s theorem B and added to the Idea-section a remark that therefore Stein manifolds play the role in complex geometry of Cartesian spaces in smooth manifold theory, for purposes of abelian (Cech)-sheaf cohomology.

    • CommentRowNumber3.
    • CommentAuthorzskoda
    • CommentTimeMay 28th 2014
    • (edited May 28th 2014)

    Affine schemes of algebraic geometry.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeMay 28th 2014

    Or close at least. I have added something here.

    • CommentRowNumber5.
    • CommentAuthorzskoda
    • CommentTimeMay 28th 2014
    • (edited May 28th 2014)

    I am not saying that (about the analytification), but precisely what you say above: affine are cohomologically trivial in the sense as proved in chapter 3 of Hartshorne’s book and this is a usually given statement when algebraic geometers look at analytic spaces. Many other deep properties are also analogous.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeJan 17th 2019

    somebody just alerted me:

    this page here has been and still is referring to

    • Zachary Maddock, Dolbeault cohomology (pdf)

    for proof of some of its statements (existence of “good” Stein covers). However, the link to that pdf

      http://www.math.columbia.edu/~maddockz/notes/dolbeault.pdf
    

    no longer works, and Google seems to see no other trace of it either.

    (?)

    diff, v12, current

    • CommentRowNumber7.
    • CommentAuthorTim_Porter
    • CommentTimeJan 17th 2019

    Zachary Maddock is on Linkedin so you might be able to contact him and put a copy of the document on the Lab if it seems worth it.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeJan 17th 2019
    • (edited Jan 17th 2019)

    For what it’s worth, I have found and uploaded an old copy of the file (here)

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeJul 19th 2021

    adjusted the wording of the example of open Riemann surfaces (here) and added pointer to the classical reference:

    diff, v15, current

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeJul 19th 2021

    adjusted the wording of the example of open Riemann surfaces (here) and added pointer to the classical reference:

    diff, v15, current

    • CommentRowNumber11.
    • CommentAuthorDmitri Pavlov
    • CommentTimeSep 15th 2021

    Just a sanity check: are disjoint unions of Stein manifolds again Stein manifolds? Including countably infinite disjoint unions? The answer seems to be yes, simply by staring at the definition, but perhaps I am missing something?

    The reason I am asking about this is that Lárusson in his paper https://arxiv.org/abs/math/0101103v3, at the beginning of Section 5 asks “It is natural to ask whether a finite homotopy sheaf on S satisfies descent.”

    Here S is the site of Stein manifolds and holomorphic maps, and a finite homotopy sheaf is a presheaf that satisfies the homotopy descent condition with respect to finite covers.

    It would seem to me that the answer to Lárusson’s question should be negative as stated, e.g., because we can take the presheaf P that assigns to a Stein manifold M the abelian group of holomorphic functions on M that vanish on all but finitely many connected components of M.

    Then P satisfies descent with respect to finite covers, i.e., is a finite homotopy sheaf in Lárusson’s terminology. However, it does not satisfy descent with respect to (say) countable disjoint covers.

    • CommentRowNumber12.
    • CommentAuthorDavidRoberts
    • CommentTimeSep 15th 2021
    • (edited Sep 15th 2021)

    I don’t see why not. Use a characterisation of n-dimensional Stein manifolds that involves proper embeddings in C^m for some m. In fact there is a uniform bound on the needed m in terms of n, so for countable disjoint unions there is a common m. Then properly embed embed the countable copies of C^m in C^m+1 as parallel affine hypersurfaces.

    Or else I can ask Finnur today, as his office is next to mine, if that’s not convincing enough. Why do you ask?

    • CommentRowNumber13.
    • CommentAuthorDmitri Pavlov
    • CommentTimeSep 15th 2021

    Re #12: Basically, I am wondering why the example in the last two paragraphs of #11 is not a (trivial) counterexample to what Lárusson is suggesting in his paper https://arxiv.org/abs/math/0101103v3, at the beginning of Section 5, where he asks “It is natural to ask whether a finite homotopy sheaf on S satisfies descent.”

    • CommentRowNumber14.
    • CommentAuthorDavidRoberts
    • CommentTimeSep 16th 2021

    I should add that one doesn’t need all the dimensions of the disjoint pieces to be equal, but you do need a bound on the dimensions. I spoke with Finnur today and he seemed to indicate that if the dimensions of the pieces are unbounded, then the disjoint union isn’t Stein. Maybe this is it.

    • CommentRowNumber15.
    • CommentAuthorDmitri Pavlov
    • CommentTimeSep 16th 2021
    • (edited Sep 16th 2021)

    if the dimensions of the pieces are unbounded, then the disjoint union isn’t Stein

    That’s not the example I had in mind, though.

    Disjoint unions of points (finite or countable) are 0-dimensional Stein manifolds.

    Finitely supported complex-valued functions on such manifolds form a presheaf that satisfies finite homotopy descent, but does not satisfy descent with respect to covers of arbitrary cardinality. This would seem to constitute a simple counterexample to the question stated in Section 5 of his paper, but probably I am just misreading something.

    • CommentRowNumber16.
    • CommentAuthorDavidRoberts
    • CommentTimeSep 17th 2021

    Oh, sorry, I was kinda ignoring the homotopy sheaf material :-)

    • CommentRowNumber17.
    • CommentAuthorUrs
    • CommentTimeSep 17th 2021

    Dmitri’s point in #11 (repeated in #13) isn’t even to do with homotopy, it’s a rather basic observation about sites and sheaves.

    Dmitri brought up a possible subtlety in the definition of Stein manifolds only as an attempt to find a technical loophole clause that would explain why Lárusson doesn’t consider what seems to be the immediate conclusion.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)